NEVA: Visual Analytics to Identify Fraudulent Networks

Trust‐ability, reputation, security and quality are the main concerns for public and private financial institutions. To detect fraudulent behaviour, several techniques are applied pursuing different goals. For well‐defined problems, analytical methods are applicable to examine the history of customer transactions. However, fraudulent behaviour is constantly changing, which results in ill‐defined problems. Furthermore, analysing the behaviour of individual customers is not sufficient to detect more complex structures such as networks of fraudulent actors. We propose NEVA (Network dEtection with Visual Analytics), a Visual Analytics exploration environment to support the analysis of customer networks in order to reduce false‐negative and false‐positive alarms of frauds. Multiple coordinated views allow for exploring complex relations and dependencies of the data. A guidance‐enriched component for network pattern generation, detection and filtering support exploring and analysing the relationships of nodes on different levels of complexity. In six expert interviews, we illustrate the applicability and usability of NEVA.

[1]  Mao Lin Huang,et al.  A Visualization Approach for Frauds Detection in Financial Market , 2009, 2009 13th International Conference Information Visualisation.

[2]  Tobias Isenberg,et al.  A Systematic Review on the Practice of Evaluating Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[3]  Scott A. Eldridge Beyond WikiLeaks: implications for the future of communications, journalism and society , 2015 .

[4]  Radu Jianu,et al.  Node-Link or Adjacency Matrices: Old Question, New Insights , 2019, IEEE Transactions on Visualization and Computer Graphics.

[5]  Alex Endert,et al.  VISAGE: Interactive Visual Graph Querying , 2016, AVI.

[6]  Daniel W. Archambault,et al.  Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[7]  Feng Chen,et al.  Graph-Structured Sparse Optimization for Connected Subgraph Detection , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[8]  Daniel A. Keim,et al.  Visual Analytics: Scope and Challenges , 2008, Visual Data Mining.

[9]  Christos Faloutsos,et al.  GRAPHITE: A Visual Query System for Large Graphs , 2008, 2008 IEEE International Conference on Data Mining Workshops.

[10]  Gary Klein Seeing What Others Don't: The Remarkable Ways We Gain Insights , 2013 .

[11]  Antonios Symvonis,et al.  A fraud detection visualization system utilizing radial drawings and heat-maps , 2013, 2014 International Conference on Information Visualization Theory and Applications (IVAPP).

[12]  Walter Didimo,et al.  Network visualization for financial crime detection , 2014, J. Vis. Lang. Comput..

[13]  Junchi Yan,et al.  Visual analytics for loan guarantee network risk management. , 2017 .

[14]  William N. Dilla,et al.  Data visualization for fraud detection: Practice implications and a call for future research , 2015, Int. J. Account. Inf. Syst..

[15]  Benjamin B. Bederson,et al.  A review of overview+detail, zooming, and focus+context interfaces , 2009, CSUR.

[16]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[17]  David S. Ebert,et al.  A Survey on Visual Analysis Approaches for Financial Data , 2016, Comput. Graph. Forum.

[18]  Franklin Allen,et al.  Networks in Finance , 2008 .

[19]  Silvia Miksch,et al.  Guidance or No Guidance? A Decision Tree Can Help , 2018, EuroVA@EuroVis.

[20]  Margit Pohl,et al.  Choosing the Right Sample? Experiences of Selecting Participants for Visualization Evaluation , 2015, EuroRV³@EuroVis.

[21]  Eve E. Hoggan,et al.  How Important Is the "Mental Map"? - An Empirical Investigation of a Dynamic Graph Layout Algorithm , 2006, GD.

[22]  Ben Shneiderman,et al.  Temporal Event Sequence Simplification , 2013, IEEE Transactions on Visualization and Computer Graphics.

[23]  Maxime Dumas,et al.  Financevis . netA Visual Survey of Financial Data Visualizations , 2014 .

[24]  Margit Pohl,et al.  The User Puzzle—Explaining the Interaction with Visual Analytics Systems , 2012, IEEE Transactions on Visualization and Computer Graphics.

[25]  P. John Clarkson,et al.  Matrices or Node-Link Diagrams: Which Visual Representation is Better for Visualising Connectivity Models? , 2006, Inf. Vis..

[26]  William Ribarsky,et al.  WireVis: Visualization of Categorical, Time-Varying Data From Financial Transactions , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[27]  Eric Horvitz,et al.  Principles of mixed-initiative user interfaces , 1999, CHI '99.

[28]  Silvia Miksch,et al.  Characterizing Guidance in Visual Analytics , 2017, IEEE Transactions on Visualization and Computer Graphics.

[29]  J.C. Roberts,et al.  State of the Art: Coordinated & Multiple Views in Exploratory Visualization , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[30]  Ross Maciejewski,et al.  A Visual Analytics Framework for Spatiotemporal Trade Network Analysis , 2019, IEEE Transactions on Visualization and Computer Graphics.

[31]  Jörn Kohlhammer,et al.  Visual analysis and exploration of complex corporate shareholder networks , 2008, Electronic Imaging.

[32]  Alex Endert,et al.  VIGOR: Interactive Visual Exploration of Graph Query Results , 2018, IEEE Transactions on Visualization and Computer Graphics.

[33]  Daniel B. Neill,et al.  Fast subset scan for spatial pattern detection , 2012 .

[34]  David J. Hand,et al.  Statistical fraud detection: A review , 2002 .

[35]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[36]  Gary Klein,et al.  Making Sense of Sensemaking 1: Alternative Perspectives , 2006, IEEE Intelligent Systems.

[37]  D. Neill,et al.  Penalized Fast Subset Scanning , 2016 .

[38]  Gary Klein,et al.  Making Sense of Sensemaking 2: A Macrocognitive Model , 2006, IEEE Intelligent Systems.

[39]  Faraz Zaidi,et al.  Interactive searching and visualization of patterns in attributed graphs , 2010, Graphics Interface.

[40]  Ted E. Senator,et al.  The NASD Regulation Advanced-Detection System (ADS) , 1998, AI Mag..

[41]  Silvia Miksch,et al.  EVA: Visual Analytics to Identify Fraudulent Events , 2018, IEEE Transactions on Visualization and Computer Graphics.

[42]  Silvia Miksch,et al.  A matter of time: Applying a data-users-tasks design triangle to visual analytics of time-oriented data , 2014, Comput. Graph..

[43]  Tamara Munzner,et al.  A Nested Model for Visualization Design and Validation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[44]  MunznerTamara A Nested Model for Visualization Design and Validation , 2009 .

[45]  Chang-Tien Lu,et al.  Survey of fraud detection techniques , 2004, IEEE International Conference on Networking, Sensing and Control, 2004.

[46]  Richard May,et al.  Foundations and Frontiers in Visual Analytics , 2009, Inf. Vis..

[47]  AignerWolfgang,et al.  Special Section on Visual Analytics , 2014 .

[48]  Allison Woodruff,et al.  Guidelines for using multiple views in information visualization , 2000, AVI '00.

[49]  Walter Didimo,et al.  Visual querying and analysis of temporal fiscal networks , 2019, Inf. Sci..

[50]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[51]  Stefano Zanero,et al.  BankSealer: An Online Banking Fraud Analysis and Decision Support System , 2014, SEC.

[52]  Silvia Miksch,et al.  A Review of Guidance Approaches in Visual Data Analysis: A Multifocal Perspective , 2019, Comput. Graph. Forum.

[53]  Alex Endert,et al.  Visual Graph Query Construction and Refinement , 2017, SIGMOD Conference.