On Performance of Sparse Fast Fourier Transform Algorithms Using the Flat Window Filter
暂无分享,去创建一个
Bin Li | Jie Chen | Zhikang Jiang | Bin Li | Jie Chen | Zhikang Jiang
[1] Kannan Ramchandran,et al. A robust sub-linear time R-FFAST algorithm for computing a sparse DFT , 2015, ArXiv.
[2] Piotr Indyk,et al. (Nearly) Sample-Optimal Sparse Fourier Transform , 2014, SODA.
[3] Kannan Ramchandran,et al. Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity , 2013, 2013 IEEE International Symposium on Information Theory.
[4] Soo-Chang Pei,et al. Sparse Fast Fourier Transform by downsampling , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[5] Shang-Ho Tsai,et al. On Performance of Sparse Fast Fourier Transform and Enhancement Algorithm , 2017, IEEE Transactions on Signal Processing.
[6] A.C. Gilbert,et al. A Tutorial on Fast Fourier Sampling , 2008, IEEE Signal Processing Magazine.
[7] Ameya Velingker,et al. Dimension-independent Sparse Fourier Transform , 2019, SODA.
[8] Piotr Indyk,et al. Recent Developments in the Sparse Fourier Transform: A compressed Fourier transform for big data , 2014, IEEE Signal Processing Magazine.
[9] Piotr Indyk,et al. Nearly optimal sparse fourier transform , 2012, STOC '12.
[10] Sudipto Guha,et al. Near-optimal sparse fourier representations via sampling , 2002, STOC '02.
[11] Anantha Chandrakasan,et al. 27.4 A 0.75-million-point fourier-transform chip for frequency-sparse signals , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).
[12] Piotr Indyk,et al. Simple and practical algorithm for sparse Fourier transform , 2012, SODA.
[13] Vishal M. Patel,et al. Multidimensional Sparse Fourier Transform Based on the Fourier Projection-Slice Theorem , 2019, IEEE Transactions on Signal Processing.
[14] Mark A. Iwen,et al. A New Class of Fully Discrete Sparse Fourier Transforms: Faster Stable Implementations with Guarantees , 2017, 1706.02740.
[15] Yan Han,et al. High-Speed Target Detection Algorithm Based on Sparse Fourier Transform , 2018, IEEE Access.
[16] Mikhail Kapralov,et al. Sample Efficient Estimation and Recovery in Sparse FFT via Isolation on Average , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[17] Mark A. Iwen,et al. Empirical evaluation of a sub-linear time sparse DFT algorithm , 2007 .
[18] Markus Püschel,et al. High-performance sparse fast Fourier transforms , 2014, 2014 IEEE Workshop on Signal Processing Systems (SiPS).
[19] Jaime Velasco Medina,et al. Efficient Software Implementation of the Nearly Optimal Sparse Fast Fourier Transform for the Noisy Case , 2015 .
[20] Cheng Wang,et al. cusFFT: A High-Performance Sparse Fast Fourier Transform Algorithm on GPUs , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
[21] Mark A. Iwen,et al. Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..
[22] Kannan Ramchandran,et al. A Fast and Robust Paradigm for Fourier Compressed Sensing Based on Coded Sampling , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[23] Kannan Ramchandran,et al. FFAST: An Algorithm for Computing an Exactly $ k$ -Sparse DFT in $O( k\log k)$ Time , 2018, IEEE Transactions on Information Theory.
[24] Jiawei Chiu. Matrix probing, skeleton decompositions, and sparse Fourier transform , 2013 .
[25] Yang Wang,et al. Adaptive Sub-Linear Time Fourier Algorithms , 2013, Adv. Data Sci. Adapt. Anal..
[26] Yang Wang,et al. A Multiscale Sub-linear Time Fourier Algorithm for Noisy Data , 2013, ArXiv.
[27] M. A. Iwen,et al. Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms , 2010, ArXiv.
[28] Gerlind Plonka-Hoch,et al. A sparse fast Fourier algorithm for real non-negative vectors , 2016, J. Comput. Appl. Math..
[29] Gerlind Plonka-Hoch,et al. A deterministic sparse FFT algorithm for vectors with small support , 2015, Numerical Algorithms.