Interlacing of the zeros of contiguous hypergeometric functions

It is well-known that hypergeometric functions satisfy first order difference-differential equations (DDEs) with rational coefficients, relating the first derivative of hypergeometric functions with functions of contiguous parameters (with parameters differing by integer numbers). However, maybe it is not so well known that the continuity of the coefficients of these DDEs implies that the real zeros of such contiguous functions are interlaced. Using this property, we explore interlacing properties of hypergeometric and confluent hypergeometric functions (Bessel functions and Hermite, Laguerre and Jacobi polynomials as particular cases).

[1]  Amparo Gil,et al.  Computing the Zeros and Turning Points of Solutions of Second Order Homogeneous Linear ODEs , 2003, SIAM J. Numer. Anal..

[2]  Wolfram Koepf,et al.  Hypergeometric Summation : An Algorithmic Approach to Summation and Special Function Identities , 1998 .

[3]  Kathy Driver,et al.  Interlacing of the zeros of Jacobi polynomials with different parameters , 2008, Numerical Algorithms.

[4]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[5]  Javier Segura On the zeros and turning points of special functions , 2003 .

[6]  Contiguous relations of hypergeometric series , 2001, math/0109222.

[7]  Kathy Driver,et al.  Interlacing of zeros of shifted sequences of one-parameter orthogonal polynomials , 2007, Numerische Mathematik.

[8]  Árpád Elbert,et al.  On the Square of the Zeros of Bessel Functions , 1984 .

[9]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[10]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[11]  Separation theorems for the zeros of certain hypergeometric polynomials , 2007 .

[12]  Javier Segura,et al.  The Zeros of Special Functions from a Fixed Point Method , 2002, SIAM J. Numer. Anal..

[13]  J. C. Eilbeck Table errata: Higher transcendental functions. Vol. I, II (McGraw-Hill, New York, 1953) by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi , 1971 .

[14]  Wolfram Koepf,et al.  Computing the Real Zeros of Hypergeometric Functions , 2004, Numerical Algorithms.

[15]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[16]  Amparo Gil,et al.  New inequalities from classical Sturm theorems , 2004, J. Approx. Theory.