A non-dividing cell population with high pyruvate dehydrogenase kinase activity regulates metabolic heterogeneity and tumorigenesis in the intestine

[1]  J. Olzmann,et al.  Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State. , 2019, Cell chemical biology.

[2]  D. Ford,et al.  Phospholipid Remodeling and Cholesterol Availability Regulate Intestinal Stemness and Tumorigenesis. , 2018, Cell stem cell.

[3]  T. Cameron Waller,et al.  Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism , 2017, Nature Cell Biology.

[4]  A. Saadatpour,et al.  Dynamic Reorganization of Chromatin Accessibility Signatures during Dedifferentiation of Secretory Precursors into Lgr5+ Intestinal Stem Cells. , 2017, Cell stem cell.

[5]  Hanlee P. Ji,et al.  Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. , 2017, Cell stem cell.

[6]  Mia Pras-Raves,et al.  Interplay between metabolic identities in the intestinal crypt supports stem cell function , 2017, Nature.

[7]  Matthew G. Vander Heiden,et al.  Understanding the Intersections between Metabolism and Cancer Biology , 2017, Cell.

[8]  K. Hochedlinger,et al.  Sox2 Suppresses Gastric Tumorigenesis in Mice. , 2016, Cell reports.

[9]  L. Guarente,et al.  mTORC1 and SIRT1 Cooperate to Foster Expansion of Gut Adult Stem Cells during Calorie Restriction , 2016, Cell.

[10]  K. Ross,et al.  SIRT6 Suppresses Pancreatic Cancer through Control of Lin28b , 2016, Cell.

[11]  Dudley Lamming,et al.  High fat diet enhances stemness and tumorigenicity of intestinal progenitors , 2016, Nature.

[12]  J. Llovet,et al.  YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression. , 2015, Cell reports.

[13]  M. Bansal,et al.  Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside of the crypt base stem cell niche , 2014, Nature Medicine.

[14]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[15]  C. Qu,et al.  Metabolic plasticity and hematopoietic stem cell biology , 2013, Current opinion in hematology.

[16]  T. Imai,et al.  Genetic reconstitution of tumorigenesis in primary intestinal cells , 2013, Proceedings of the National Academy of Sciences.

[17]  Dennis Brown,et al.  High Resolution Helium Ion Scanning Microscopy of the Rat Kidney , 2013, PloS one.

[18]  K. Finberg,et al.  Altered V-ATPase expression in renal intercalated cells isolated from B1 subunit-deficient mice by fluorescence-activated cell sorting. , 2013, American journal of physiology. Renal physiology.

[19]  H. Clevers,et al.  Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties , 2013, Cell.

[20]  M. Suematsu,et al.  Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. , 2013, Cell stem cell.

[21]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[22]  A. Regev,et al.  The Histone Deacetylase SIRT6 Is a Tumor Suppressor that Controls Cancer Metabolism , 2012, Cell.

[23]  W. de Lau,et al.  Monoclonal Antibodies Against Lgr5 Identify Human Colorectal Cancer Stem Cells , 2012, Stem cells.

[24]  Enrico Gratton,et al.  Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH , 2012, Scientific Reports.

[25]  Bruce J. Aronow,et al.  The Pan-ErbB Negative Regulator Lrig1 Is an Intestinal Stem Cell Marker that Functions as a Tumor Suppressor , 2012, Cell.

[26]  M. Capecchi,et al.  The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations , 2011, Proceedings of the National Academy of Sciences.

[27]  J. Epstein,et al.  Interconversion Between Intestinal Stem Cell Populations in Distinct Niches , 2011, Science.

[28]  M. V. Vander Heiden,et al.  Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. , 2011, Annual review of cell and developmental biology.

[29]  Hans Clevers,et al.  The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. , 2011, Cell stem cell.

[30]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[31]  Camilla A. Richmond,et al.  Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells , 2010, Proceedings of the National Academy of Sciences.

[32]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[33]  Hans Clevers,et al.  Crypt stem cells as the cells-of-origin of intestinal cancer , 2009, Nature.

[34]  Robert A. Harris,et al.  Pyruvate Dehydrogenase Complex Activity Controls Metabolic and Malignant Phenotype in Cancer Cells* , 2008, Journal of Biological Chemistry.

[35]  M. Giel-Moloney,et al.  Enteroendocrine precursors differentiate independently of Wnt and form serotonin expressing adenomas in response to active β-catenin , 2007, Proceedings of the National Academy of Sciences.

[36]  S. Armstrong,et al.  FoxOs Are Critical Mediators of Hematopoietic Stem Cell Resistance to Physiologic Oxidative Stress , 2007, Cell.

[37]  G. Collins The next generation. , 2006, Scientific American.

[38]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  C. Potten,et al.  Stem cells in gastrointestinal epithelium: numbers, characteristics and death. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.