An information-processing model of the BOLD response in symbol manipulation tasks

Two imaging experiments were performed—one involving an algebraic transformation task studied by Anderson, Reder, and Lebiere (1996) and the other an abstraction symbol manipulation task studied by Blessing and Anderson (1996). ACT-R models exist that predict the latency patterns in these tasks. These models require activity in an imaginal buffer to represent changes to the problem representation, in a retrieval buffer to hold information from declarative memory, and in a manual buffer to hold information about motor behavior. A general theory is described about how to map activity in these buffers onto the fMRI blood oxygen level dependent (BOLD) response. This theory claims that the BOLD response is integrated over the duration that a buffer is active and can be used to predict the observed BOLD function. Activity in the imaginal buffer is shown to predict the BOLD response in a left posterior parietal region; activity in the retrieval buffer is shown to predict the BOLD response in a left prefrontal region; and activity in the manual buffer is shown to predict activity in a motor region. More generally, this article shows how to map a large class of information-processing theories (not just ACT-R) onto the BOLD response and provides a precise interpretation of the cognitive significance of the BOLD response.

[1]  P. Roland,et al.  Supplementary motor area and other cortical areas in organization of voluntary movements in man. , 1980, Journal of neurophysiology.

[2]  Elizabeth K. Warrington,et al.  Arithmetic Skills in Patients with Unilateral Cerebral Lesions , 1986, Cortex.

[3]  J. Saint-Cyr,et al.  Procedural learning and neostriatal dysfunction in man. , 1988, Brain : a journal of neurology.

[4]  David H. Kirshner The Visual Syntax of Algebra. , 1989 .

[5]  Monica Rosselli,et al.  Calculation deficits in patients with right and left hemisphere damage , 1989, Neuropsychologia.

[6]  Bryan Kolb,et al.  Fundamentals of human neuropsychology, 3rd ed. , 1990 .

[7]  Fundamentals of human neuropsychology, third edition. Bryan Kolb and Ian Q. Whishaw. W. H. Freeman, New York, 1990. No. of pages: 910. Price: £24.95 , 1991 .

[8]  J. Mazziotta,et al.  Automated image registration , 1993 .

[9]  F. Craik,et al.  Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[10]  I. Whishaw,et al.  Fundamentals of Human Neuropsychology , 1995 .

[11]  S P Wise,et al.  Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. , 1995, Cerebral cortex.

[12]  Jonathan D. Cohen,et al.  Improved Assessment of Significant Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster‐Size Threshold , 1995, Magnetic resonance in medicine.

[13]  Richard Coppola,et al.  Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study , 1995, Neuropsychologia.

[14]  Blessing,et al.  The Use of Prior Knowledge in Learning from Examples , 1996 .

[15]  John R. Anderson,et al.  Working Memory: Activation Limitations on Retrieval , 1996, Cognitive Psychology.

[16]  E. Tulving,et al.  PET studies of encoding and retrieval: The HERA model , 1996, Psychonomic bulletin & review.

[17]  John R. Anderson,et al.  How people learn to skip steps. , 1996 .

[18]  C. Gerfen,et al.  The frontal cortex-basal ganglia system in primates. , 1996, Critical reviews in neurobiology.

[19]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[20]  M. Farah,et al.  Behavioral Neurology and Neuropsychology , 1996 .

[21]  D E Kieras,et al.  A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. , 1997, Psychological review.

[22]  David E. Kieras,et al.  A computational theory of executive cognitive processes and multiple-task performance: Part 2. Accounts of psychological refractory-period phenomena. , 1997 .

[23]  Mark S. Cohen,et al.  Parametric Analysis of fMRI Data Using Linear Systems Methods , 1997, NeuroImage.

[24]  A. Dale,et al.  Selective averaging of rapidly presented individual trials using fMRI , 1997, Human brain mapping.

[25]  T. Goldberg,et al.  Uncoupling Cognitive Workload and Prefrontal Cortical Physiology: A PET rCBF Study , 1998, NeuroImage.

[26]  C. Lebiere,et al.  The Atomic Components of Thought , 1998 .

[27]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[28]  Richard W. Pew,et al.  Modeling human and organizational behavior : application to military simulations , 1998 .

[29]  G. Glover,et al.  Regional Variability of Cerebral Blood Oxygenation Response to Hypercapnia , 1999, NeuroImage.

[30]  J. Guérit,et al.  Behavioral Neurology and Neuropsychology, T.E. Feinberg, M.J. Farah. McGraw Hill, Berlin (1997), 872 , 1999 .

[31]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[32]  M. Just,et al.  Computational modeling of high‐level cognition and brain function , 1999, Human brain mapping.

[33]  E. Spelke,et al.  Sources of mathematical thinking: behavioral and brain-imaging evidence. , 1999, Science.

[34]  K. Doya,et al.  Parallel neural networks for learning sequential procedures , 1999, Trends in Neurosciences.

[35]  Erik D. Reichle,et al.  The Neural Bases of Strategy and Skill in Sentence–Picture Verification , 2000, Cognitive Psychology.

[36]  A. Amos A Computational Model of Information Processing in the Frontal Cortex and Basal Ganglia , 2000, Journal of Cognitive Neuroscience.

[37]  F. Ashby,et al.  The Neuropsychological Bases of Category Learning , 2000 .

[38]  G. McCarthy,et al.  Evidence for a Refractory Period in the Hemodynamic Response to Visual Stimuli as Measured by MRI , 2000, NeuroImage.

[39]  G. Glover,et al.  Dissociating Prefrontal and Parietal Cortex Activation during Arithmetic Processing , 2000, NeuroImage.

[40]  R. Cabeza,et al.  Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies , 2000, Journal of Cognitive Neuroscience.

[41]  J. Grafman,et al.  The calculating brain: an fMRI study , 2000, Neuropsychologia.

[42]  J. Cohen,et al.  Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. , 2000, Science.

[43]  Endel Tulving,et al.  Prefrontal cortex and episodic memory retrieval mode. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  John R. Anderson,et al.  The role of prefrontal cortex and posterior parietal cortex in task switching. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Michael J. Frank,et al.  Interactions between frontal cortex and basal ganglia in working memory: A computational model , 2001, Cognitive, affective & behavioral neuroscience.

[46]  B. Mazoyer,et al.  Neural Correlates of Simple and Complex Mental Calculation , 2001, NeuroImage.

[47]  A. Kleinschmidt,et al.  Dissociating neural correlates of cognitive components in mental calculation. , 2001, Cerebral cortex.

[48]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[49]  David Kirshner,et al.  Visual Salience of Algebraic Transformations , 2004 .