Anomaly Detection Algorithm Based on CFSFDP

[1]  Shalini Batra,et al.  A novel ensembled technique for anomaly detection , 2017, International Journal of Communication Systems.

[2]  Yuval Elovici,et al.  “Andromaly”: a behavioral malware detection framework for android devices , 2012, Journal of Intelligent Information Systems.

[3]  Philippe Owezarski,et al.  Online and Scalable Unsupervised Network Anomaly Detection Method , 2017, IEEE Trans. Netw. Serv. Manag..

[4]  Won Suk Lee,et al.  An anomaly intrusion detection method by clustering normal user behavior , 2003, Comput. Secur..

[5]  B. S. Harish,et al.  Anomaly based Intrusion Detection using Modified Fuzzy Clustering , 2017, Int. J. Interact. Multim. Artif. Intell..

[6]  Simin Nadjm-Tehrani,et al.  Adaptive real-time anomaly detection with incremental clustering , 2007, Inf. Secur. Tech. Rep..

[7]  Steven Furnell,et al.  D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks , 2014 .

[8]  Yonghao Gu,et al.  Multiple-Features-Based Semisupervised Clustering DDoS Detection Method , 2017 .

[9]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[10]  Simin Nadjm-Tehrani,et al.  Crowdroid: behavior-based malware detection system for Android , 2011, SPSM '11.

[11]  Yajin Zhou,et al.  Dissecting Android Malware: Characterization and Evolution , 2012, 2012 IEEE Symposium on Security and Privacy.

[12]  Jaber Karimpour,et al.  Intrusion detection in network flows based on an optimized clustering criterion , 2017, Turkish J. Electr. Eng. Comput. Sci..

[13]  Alessandro Laio,et al.  Clustering by fast search and find of density peaks , 2014, Science.