Mapping urban areas by fusing multiple sources of coarse resolution remotely sensed data

The main objective of this research is to improve understanding of the methodological and validation requirements for mapping urban land cover over large areas from coarse resolution remotely sensed data. A technique called boosting is used to improve supervised classification accuracy and provides a means to integrate MODIS data with the DMSP nighttime lights data. Results indicate that fusion of these two data types improves urban classification results by resolving confusion between urban and other classes that occurs when either of the data sets is used alone. Traditional measures of accuracy assessment as well as new, maplet-based methods demonstrate the effectiveness of the methodology for creating maps of cities at continental to global scales.

[1]  R. Welch,et al.  Monitoring urban population and energy utilization patterns from satellite Data , 1980 .

[2]  D. Toll,et al.  Detecting residential land use development at the urban fringe , 1982 .

[3]  D. H. Card Using known map category marginal frequencies to improve estimates of thematic map accuracy , 1982 .

[4]  P. Curran,et al.  The accuracy of ground data used in remote-sensing investigations , 1985 .

[5]  J. Ross Quinlan,et al.  Simplifying Decision Trees , 1987, Int. J. Man Mach. Stud..

[6]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[7]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[8]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[9]  U. Fayyad,et al.  On the handling of continuous-valued attributes in decision tree generation , 2004, Machine Learning.

[10]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[11]  D. Danko The digital chart of the world project , 1992 .

[12]  Robert A. Schowengerdt,et al.  A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[13]  U. Deichmann,et al.  The Global Demography Project (95-6) , 1995 .

[14]  B. Turner,et al.  Changes in land use and land cover: a global perspective , 1995 .

[15]  C. Robert The Bayesian choice : a decision-theoretic motivation , 1996 .

[16]  David M. Stoms,et al.  Validating large‐area land cover databases with Maplets , 1996 .

[17]  J. Ross Quinlan,et al.  Bagging, Boosting, and C4.5 , 1996, AAAI/IAAI, Vol. 1.

[18]  C. Elvidge,et al.  Mapping City Lights With Nighttime Data from the DMSP Operational Linescan System , 1997 .

[19]  Thomas R. Loveland,et al.  The IGBP-DIS global 1 km land cover data set , 1997 .

[20]  A. Belward,et al.  The IGBP-DIS global 1km land cover data set, DISCover: First results , 1997 .

[21]  P. Sutton Modeling population density with night-time satellite imagery and GIS , 1997 .

[22]  C. Brodley,et al.  Decision tree classification of land cover from remotely sensed data , 1997 .

[23]  C. Elvidge,et al.  A Technique for Using Composite DMSP/OLS "City Lights"Satellite Data to Map Urban Area , 1997 .

[24]  Arturo Estrella,et al.  A new measure of fit for equations with dichotomous dependent variables , 1998 .

[25]  Trevor Hastie,et al.  Additive Logistic Regression : a Statistical , 1998 .

[26]  T. Owen,et al.  Using DMSP-OLS light frequency data to categorize urban environments associated with US climate observing stations , 1998 .

[27]  Terry L. Sohl,et al.  Regional characterization of land cover using multiple sources of data , 1998 .

[28]  Limin Yang,et al.  An analysis of the IGBP global land-cover characterization process , 1999 .

[29]  Alan H. Strahler,et al.  Maximizing land cover classification accuracies produced by decision trees at continental to global scales , 1999, IEEE Trans. Geosci. Remote. Sens..

[30]  P. Sutton,et al.  Radiance Calibration of DMSP-OLS Low-Light Imaging Data of Human Settlements , 1999 .

[31]  J. Ross Quinlan,et al.  Simplifying decision trees , 1987, Int. J. Hum. Comput. Stud..

[32]  Rasim Latifovic,et al.  Selecting Representative High Resolution Sample Images for Land Cover Studies. Part 2 Application to Estimating Land Cover Composition , 2000, Remote Sensing of Environment.

[33]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[34]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[35]  J. Muller,et al.  Night-time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions , 2000 .

[36]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[37]  Feng Gao,et al.  Characterization of North American land cover from NOAA‐AVHRR data using the EOS MODIS Land Cover Classification Algorithm , 2000 .

[38]  Johannes R. Sveinsson,et al.  Consensus Based Classification of Multisource Remote Sensing Data , 2000, Multiple Classifier Systems.

[39]  Limin Yang,et al.  COMPLETION OF THE 1990S NATIONAL LAND COVER DATA SET FOR THE CONTERMINOUS UNITED STATES FROM LANDSAT THEMATIC MAPPER DATA AND ANCILLARY DATA SOURCES , 2001 .

[40]  Mark A. Friedl,et al.  Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods , 2001, IEEE Trans. Geosci. Remote. Sens..

[41]  Stephen V. Stehman,et al.  Statistical Rigor and Practical Utility in Thematic Map Accuracy Assessment , 2001 .

[42]  Limin Yang,et al.  Thematic accuracy of MRLC land cover for the eastern United States , 2001 .

[43]  C. Woodcock,et al.  Monitoring land-use change in the Pearl River Delta using Landsat TM , 2002 .

[44]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[45]  Usama M. Fayyad,et al.  On the Handling of Continuous-Valued Attributes in Decision Tree Generation , 1992, Machine Learning.

[46]  Yoram Singer,et al.  Logistic Regression, AdaBoost and Bregman Distances , 2000, Machine Learning.

[47]  John Mingers,et al.  An Empirical Comparison of Pruning Methods for Decision Tree Induction , 1989, Machine Learning.