Tunneling Spin Valves Based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals Heterostructures.

Thin van der Waals (vdW) layered magnetic materials hold the possibility of realizing vdW heterostructures with new functionalities. Here, we report on the realization and investigation of tunneling spin valves based on van der Waals heterostructures consisting of an atomically thin hBN layer acting as tunnel barrier and two exfoliated Fe3GeTe2 crystals acting as ferromagnetic electrodes. Low-temperature anomalous Hall effect measurements show that thin Fe3GeTe2 crystals are metallic ferromagnets with an easy axis perpendicular to the layers and a very sharp magnetization switching at magnetic field values that depends slightly on their geometry. In Fe3GeTe2/hBN/Fe3GeTe2 heterostructures, we observe textbook behavior of the tunneling resistance, which is minimum (maximum) when the magnetization in the two electrodes is parallel (antiparallel) to each other. The magnetoresistance is 160% at low temperature, from which we determine the spin polarization of Fe3GeTe2 to be 0.66, corresponding to 83% and 17% of the majority and minority carriers, respectively. The measurements also show that, with increasing temperature, the evolution of the spin polarization extracted from the tunneling magnetoresistance is proportional to the temperature dependence of the magnetization extracted from the analysis of the anomalous Hall conductivity. This suggests that the magnetic properties of the surface are representative of those of the bulk, as may be expected for vdW materials.

[1]  Hyun Ho Kim,et al.  One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. , 2018, Nano letters.

[2]  Changgu Lee,et al.  Hard magnetic properties in nanoflake van der Waals Fe3GeTe2 , 2018, Nature Communications.

[3]  Wang Yao,et al.  Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.

[4]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[5]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[6]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[7]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[8]  Takashi Taniguchi,et al.  Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 , 2018, Nature Communications.

[9]  Yi Liu,et al.  Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2 , 2018, Science Advances.

[10]  Y. Sheng,et al.  Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy , 2017, npj 2D Materials and Applications.

[11]  Shiming Zhou,et al.  Critical behavior of the van der Waals bonded high TC ferromagnet Fe3GeTe2 , 2017, Scientific Reports.

[12]  B. Dlubak,et al.  2D-MTJs: introducing 2D materials in magnetic tunnel junctions , 2017 .

[13]  E. Bauer,et al.  Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2 , 2016 .

[14]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[15]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[16]  P. Kent,et al.  Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2 , 2016 .

[17]  A. Fert,et al.  Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers , 2016 .

[18]  M. W. Iqbal,et al.  Room temperature spin valve effect in NiFe/WS2/Co junctions , 2016, Scientific Reports.

[19]  G. Duesberg,et al.  Spin-dependent transport properties of Fe3O4/MoS2/Fe3O4 junctions , 2015, Scientific Reports.

[20]  R. Moriya,et al.  Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide , 2015, 1509.03525.

[21]  S. Sanvito,et al.  Spin-Valve Effect in NiFe/MoS2/NiFe Junctions. , 2015, Nano letters.

[22]  André Dankert,et al.  Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers , 2014, Nano Research.

[23]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[24]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[25]  N. Peres,et al.  Electron tunneling through ultrathin boron nitride crystalline barriers. , 2012, Nano letters.

[26]  Kenneth L. Shepard,et al.  Electron tunneling through atomically flat and ultrathin hexagonal boron nitride , 2011 .

[27]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[28]  L. Kienle,et al.  Fe3GeTe2 and Ni3GeTe2 – Two New Layered Transition‐Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties , 2006 .

[29]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  E. Tsymbal,et al.  Spin-dependent tunnelling in magnetic tunnel junctions , 2003 .

[31]  J. L. Costa-Krämer,et al.  Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001) , 2001 .

[32]  F. Zavaliche,et al.  Single-crystal magnetotunnel junctions , 2001 .

[33]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[34]  M. Julliere Tunneling between ferromagnetic films , 1975 .