Design and properties of functional hybrid organic-inorganic membranes for fuel cells.

This critical review presents a discussion on the major advances in the field of organic-inorganic hybrid membranes for fuel cells application. The hybrid organic-inorganic approach, when the organic part is not conductive, reproduces to some extent the behavior of Nafion where discrete hydrophilic and hydrophilic domains are homogeneously distributed. A large variety of proton conducting or non conducting polymers can be combined with various functionalized, inorganic mesostructured particles or an inorganic network in order to achieve high proton conductivity, and good mechanical and chemical properties. The tuning of the interface between these two components and the control over chemical and processing conditions are the key parameters in fabricating these hybrid organic-inorganic membranes with a high degree of reproducibility. This dynamic coupling between chemistry and processing requires the extensive use and development of complementary ex situ measurements with in situ characterization techniques, following in real time the molecular precursor solutions to the formation of the final hybrid organic-inorganic membranes. These membranes combine the intrinsic physical and chemical properties of both the inorganic and organic components. The development of the sol-gel chemistry allows a fine tuning of the inorganic network, which exhibits acid-based functionalized pores (-SO(3)H, -PO(3)H(2), -COOH), tunable pore size and connectivity, high surface area and accessibility. As such, these hybrid membranes containing inorganic materials are a promising family for controlling conductivity, mechanical and chemical properties (349 references).

[1]  S. Holdcroft,et al.  Novel Organic−Inorganic Hybrids with Increased Water Retention for Elevated Temperature Proton Exchange Membrane Application , 2008 .

[2]  H. Pu,et al.  Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2 , 2009 .

[3]  S. Subianto,et al.  Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous PEM applications. , 2009, ACS applied materials & interfaces.

[4]  E. Giannelis,et al.  Nafion–clay nanocomposite membranes: Morphology and properties , 2009 .

[5]  Yun Jung Lee,et al.  Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes , 2009, Science.

[6]  K. Mauritz,et al.  Poly[(ether-ether-sulfone)-co-(ether-sulfone)]/Silicon Oxide Microcomposite Films Produced Via the Sol-Gel Reaction for Tetraethylorthosilicate , 1994 .

[7]  E. Peled,et al.  Novel composite proton-exchange membrane based on silica-anchored sulfonic acid (SASA) , 2006 .

[8]  T. Arima Sliding electrons take charge. , 2008, Nature materials.

[9]  Deborah J. Jones,et al.  Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications , 2001 .

[10]  E. Chalkova,et al.  Effect of TiO2 Surface Properties on Performance of Nafion-Based Composite Membranes in High Temperature and Low Relative Humidity PEM Fuel Cells , 2005 .

[11]  E. Montoneri,et al.  Protonic conductivity of layered zirconium phosphonates containing —SO3H groups. III. Preparation and characterization of γ-zirconium sulfoaryl phosphonates , 1996 .

[12]  M. Pegoraro,et al.  Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity , 1999 .

[13]  P. Jannasch Recent developments in high-temperature proton conducting polymer electrolyte membranes , 2003 .

[14]  Shimshon Gottesfeld,et al.  Characterization of polymer electrolytes for fuel cell applications , 1993 .

[15]  Xingwang Zhang,et al.  Polymerization of Ionic Liquid-Based Microemulsions: A Versatile Method for the Synthesis of Polymer Electrolytes , 2008 .

[16]  W. Brittain,et al.  Surface initiated polymerizations from silica nanoparticles. , 2006, Soft matter.

[17]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[18]  Ravindra Datta,et al.  Membrane‐Supported Nonvolatile Acidic Electrolytes Allow Higher Temperature Operation of Proton‐Exchange Membrane Fuel Cells , 1997 .

[19]  Zhongwei Chen,et al.  Synthesis of Template-Free Zeolite Nanocrystals by Reverse Microemulsion−Microwave Method , 2005 .

[20]  H. Yeager,et al.  Cation and Water Diffusion in Nafion Ion Exchange Membranes: Influence of Polymer Structure , 1981 .

[21]  T. Gierke,et al.  Ion transport and clustering in nafion perfluorinated membranes , 1983 .

[22]  W. Huck,et al.  Polymer brushes via surface-initiated polymerizations. , 2004, Chemical Society reviews.

[23]  L. Madeira,et al.  Proton electrolyte membrane properties and direct methanol fuel cell performance: I. Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes , 2005 .

[24]  Hui Xu,et al.  Improving PEMFC Performance Using Low Equivalent Weight PFSA Ionomers and Pt-Co ∕ C Catalyst in the Cathode , 2007 .

[25]  M. Antonietti,et al.  Promises and problems of mesoscale materials chemistry or why meso? , 2004, Chemistry.

[26]  Juin-Yih Lai,et al.  Increases in the proton conductivity and selectivity of proton exchange membranes for direct methanol fuel cells by formation of nanocomposites having proton conducting channels , 2009 .

[27]  Sol M Gruner,et al.  The plumber's nightmare: a new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates. , 2003, Journal of the American Chemical Society.

[28]  E. Giannelis,et al.  Nafion/Clay Hybrids with a Network Structure , 2009 .

[29]  A. Shukla,et al.  A Sol-Gel Modified Alternative Nafion-Silica Composite Membrane for Polymer Electrolyte Fuel Cells , 2007 .

[30]  K. Kreuer Proton Conductivity: Materials and Applications , 1996 .

[31]  A. Durán,et al.  Hybrid Organic/Inorganic Sol-Gel Materials for Proton Conducting Membranes , 2004 .

[32]  Otoo Yamada,et al.  Branched/Crosslinked Sulfonated Polyimide Membranes for Polymer Electrolyte Fuel Cells , 2005 .

[33]  Aravindaraj G. Kannan,et al.  In situ modification of Nafion® membranes with phospho-silicate for improved water retention and proton conduction , 2009 .

[34]  Sami Hietala,et al.  Sorption and diffusion of methanol and water in PVDF-g-PSSA and Nafion® 117 polymer electrolyte membranes , 2000 .

[35]  P. Staiti Proton conductive membranes based on silicotungstic acid/silica and polybenzimidazole , 2001 .

[36]  Mohammad K. Hassan,et al.  Nanophase Separated Perfluorinated Ionomers as Sol‐Gel Polymerization Templates for Functional Inorganic Oxide Nanoparticles , 2007 .

[37]  M. Nogami,et al.  Pore-Controlled Proton Conducting Silica Films , 2002 .

[38]  G. Robertson,et al.  Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes , 2004 .

[39]  Meilin Liu,et al.  Synthesis and properties of phosphonic acid-grafted hybrid inorganic–organic polymer membranes , 2006 .

[40]  Mark E. Davis,et al.  Proton Conductivity in Sulfonic Acid-Functionalized Zeolite Beta: Effect of Hydroxyl Group , 2008 .

[41]  M. Giotto,et al.  An NMR study of the state of ions and diffusion in perfluorosulfonate ionomer , 2006 .

[42]  C. Ma,et al.  High proton-conducting Nafion®/–SO3H functionalized mesoporous silica composite membranes , 2007 .

[43]  Meilin Liu,et al.  Synthesis and conductivity of proton-electrolyte membranes based on hybrid inorganic-organic copolymers , 2003 .

[44]  R. Kannan,et al.  Polymer electrolyte fuel cells using nafion-based composite membranes with functionalized carbon nanotubes. , 2008, Angewandte Chemie.

[45]  S. Licoccia,et al.  Effect of a Proton Conducting Filler on the Physico‐Chemical Properties of SPEEK‐Based Membranes , 2009 .

[46]  Philippe Belleville,et al.  Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer , 2006, Nature materials.

[47]  R. Savinell,et al.  Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments , 1996 .

[48]  M. Nogami,et al.  Proton Conduction and Pore Structure in Sol−Gel Glasses , 2002 .

[49]  Bruno Scrosati,et al.  New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[50]  Kenneth A. Mauritz,et al.  Organic-Inorganic Hybrid Materials: Perfluorinated Ionomers as Sol-Gel Polymerization Templates for Inorganic Alkoxides , 1998 .

[51]  H. Kita,et al.  Synthesis and properties of sulfonated polyimides from homologous sulfonated diamines bearing bis(aminophenoxyphenyl)sulfone , 2007 .

[52]  Robert B. Moore,et al.  Novel Nafion®/ORMOSIL hybrids via in situ sol-gel reactions: 2. Probe of ORMOSIL phase nanostructure by 29Si solid state NMR spectroscopy , 1996 .

[53]  C. Sanchez,et al.  One‐Pot Synthesis of Functional Helicoidal Hybrid Organic–Inorganic Nanofibers with Periodically Organized Mesoporosity , 2009 .

[54]  M. T. Colomer Nanoporous Anatase Thin Films as Fast Proton‐Conducting Materials , 2006 .

[55]  M. Yandrasits,et al.  Proton Exchange Membranes for Fuel Cell Applications , 2006 .

[56]  David E. Williams,et al.  Meso‐SiO2–C12EO10OH–CF3SO3H—A Novel Proton‐Conducting Solid Electrolyte , 2003 .

[57]  J. Texter,et al.  Surfactant ionic liquid-based microemulsions for polymerization. , 2006, Chemical communications.

[58]  P. Kuo,et al.  Poly(oxyalkylene)diamine-Functionalized Carbon Nanotube/Perfluorosulfonated Polymer Composites: Synthesis, Water State, and Conductivity , 2008 .

[59]  Qiang Chen,et al.  Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. , 2008, Nature materials.

[60]  T. Minami,et al.  Comparison of structure and proton conductivity of phosphosilicate gels derived from several kinds of phosphorus-containing compounds , 2001 .

[61]  Mark E. Davis,et al.  Proton Conductivity of Acid-Functionalized Zeolite Beta, MCM-41, and MCM-48: Effect of Acid Strength , 2008 .

[62]  M. Anderson,et al.  Effect of Pore-Wall Chemistry on Proton Conductivity in Mesoporous Titanium Dioxide , 2000 .

[63]  A. Morin,et al.  Advanced Mesostructured Hybrid Silica−Nafion Membranes for High-Performance PEM Fuel Cell , 2008 .

[64]  Dong-Ryul Shin,et al.  Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell , 2003 .

[65]  C. Debiemme-Chouvy,et al.  Proton transport properties in hybrid membranes investigated by ac-electrogravimetry , 2010 .

[66]  A. Morin,et al.  Aging mechanism of Sulfonated poly(aryl ether ketone) (sPAEK) in an hydroperoxide solution and in fuel cell , 2010 .

[67]  Keonkuk Kim,et al.  Zirconium phosphate sulfonated poly (fluorinated arylene ether)s composite membranes for PEMFCs at 100–140 °C , 2006 .

[68]  Hiroyuki Uchida,et al.  Polymer Electrolyte Membranes Incorporated with Nanometer-Size Particles of Pt and/or Metal-Oxides: Experimental Analysis of the Self-Humidification and Suppression of Gas-Crossover in Fuel Cells , 1998 .

[69]  Patrick T. Mather,et al.  Nanofiber Network Ion-Exchange Membranes , 2008 .

[70]  H. Ohno Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles , 2002 .

[71]  G. Gebel,et al.  Neutron and X‐ray Scattering: Suitable Tools for Studying Ionomer Membranes , 2005 .

[72]  Robert F. Savinell,et al.  High temperature proton exchange membranes based on polybenzimidazoles for fuel cells , 2009 .

[73]  Water dynamics in ionomer membranes by field-cycling NMR relaxometry. , 2006 .

[74]  K. Kudo,et al.  Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes , 2003 .

[75]  Galo J. A. A. Soler-Illia,et al.  Coupling Nanobuilding Block and Breath Figures Approaches for the Designed Construction of Hierarchically Templated Porous Materials and Membranes , 2008 .

[76]  J. E. Mark,et al.  Elastomeric networks cross-linked by silica or titania fillers , 1985 .

[77]  James M. Fenton,et al.  Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells , 2006 .

[78]  T. Zawodzinski,et al.  Multiblock sulfonated–fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell , 2006 .

[79]  Wei Cui,et al.  New sulfonated engineering polymers via the metalation route. I. Sulfonated poly(ethersulfone) PSU Udel® via metalation-sulfination-oxidation , 1996 .

[80]  Naba K Dutta,et al.  Interfacial interactions in aprotic ionic liquid based protonic membrane and its correlation with high temperature conductivity and thermal properties. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[81]  Antonino S. Aricò,et al.  Surface properties of inorganic fillers for application in composite membranes-direct methanol fuel cells , 2004 .

[82]  J. Goodenough,et al.  Fast proton conduction in inorganic ion-exchange compounds , 1980 .

[83]  Stephen Mann,et al.  Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. , 2009, Nature materials.

[84]  E. Higuchi,et al.  Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. , 2007, Journal of the American Chemical Society.

[85]  Claire Hartmann-Thompson,et al.  Multilayer Sulfonated Polyhedral Oligosilsesquioxane (S-POSS)-Sulfonated Polyphenylsulfone (S-PPSU) Composite Proton Exchange Membranes† , 2010 .

[86]  S. Kaliaguine,et al.  Solid electrolyte properties of sulfonic acid functionalized mesostructured porous silica , 2002 .

[87]  Paola Costamagna,et al.  Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C , 2002 .

[88]  J. Chiefari,et al.  Living free-radical polymerization by reversible addition - Fragmentation chain transfer: The RAFT process , 1998 .

[89]  Bénédicte Lebeau,et al.  Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. , 2002, Chemical reviews.

[90]  N. S. Tomer,et al.  Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives , 2009 .

[91]  W. Sakamoto,et al.  Synthesis of proton-conductive sol–gel membranes from trimethoxysilylmethylstyrene and phenylvinylphosphonic acid , 2007 .

[92]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[93]  M. Minutoli,et al.  Influence of composition and acid treatment on proton conduction of composite polybenzimidazole membranes , 2001 .

[94]  J. Fraissard,et al.  Proton NMR studies on concentrated aqueous sulfuric acid solutions and Nafion-H , 1997 .

[95]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[96]  H. Munakata,et al.  Enhancement on proton conductivity of inorganic–organic composite electrolyte membrane by addition of sulfonic acid group , 2005 .

[97]  J. Caro,et al.  Proton conductivity of sulfonic acid functionalised mesoporous materials , 2007 .

[98]  William J. Koros,et al.  Tailoring mixed matrix composite membranes for gas separations , 1997 .

[99]  Huanting Wang,et al.  Nanostructured zeolite 4A molecular sieving air separation membranes. , 2002, Chemical communications.

[100]  S. Hanna,et al.  Interpretation of the Small-Angle X-ray Scattering from Swollen and Oriented Perfluorinated Ionomer Membranes , 2000 .

[101]  Gérard Gebel,et al.  Evidence of elongated polymeric aggregates in Nafion , 2002 .

[102]  M. Casciola,et al.  ac conductivity of α-layered zirconium phosphate in the presence of water vapour at 100–200°C , 1993 .

[103]  C. Laberty‐Robert,et al.  Designing meso- and macropore architectures in hybrid organic-inorganic membranes by combining surfactant and breath figure templating (BFT). , 2009, Physical chemistry chemical physics : PCCP.

[104]  C. Sanchez,et al.  DESIGN OF HYBRID ORGANIC-INORGANIC MATERIALS SYNTHESIZED VIA SOL-GEL CHEMISTRY , 1994 .

[105]  G. Gebel,et al.  Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution , 2000 .

[106]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[107]  Huanting Wang,et al.  High silica zeolite Y nanocrystals by dealumination and direct synthesis , 2004 .

[108]  S. M. Javaid Zaidi,et al.  Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate , 2005 .

[109]  Jung-Ki Park,et al.  Nanocomposite single ion conductor based on organic–inorganic hybrid , 2004 .

[110]  Valérie Cabuil,et al.  Designed Hybrid Organic−Inorganic Nanocomposites from Functional Nanobuilding Blocks , 2001 .

[111]  A. Durán,et al.  Proton conducting sol-gel sulfonated membranes produced from 2-allylphenol, 3-glycidoxypropyl trimethoxysilane and tetraethyl orthosilicate , 2009 .

[112]  V. Deimede,et al.  Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications , 2000 .

[113]  Chang Houn Rhee,et al.  Nafion/Sulfonated Montmorillonite Composite: A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells , 2005 .

[114]  S. Kaliaguine,et al.  Propyl- and arene-sulfonic acid functionalized periodic mesoporous organosilicas , 2004 .

[115]  S. Licoccia,et al.  A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization , 2005 .

[116]  J. Kerres,et al.  Blended and Cross‐Linked Ionomer Membranes for Application in Membrane Fuel Cells , 2005 .

[117]  G. Gebel,et al.  A SANS determination of the influence of external conditions on the nanostructure of nafion membrane , 2001 .

[118]  Yuhan Sun,et al.  Multiphasic Acetalization and Alkylation on Organically Modified MSU-X Silica , 2001 .

[119]  A. K. Banthia,et al.  Synthesis and characterization of polyvinyl alcohol copolymer/phosphomolybdic acid-based crosslinked composite polymer electrolyte membranes , 2008 .

[120]  K. Kreuer Fast proton conductivity: A phenomenon between the solid and the liquid state? , 1997 .

[121]  M. Watanabe,et al.  Brønsted acid-base ionic liquids and their use as new materials for anhydrous proton conductors. , 2003, Chemical communications.

[122]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[123]  Warren H. J. Hogarth,et al.  Proton conductivity of mesoporous sol–gel zirconium phosphates for fuel cell applications , 2005 .

[124]  S. Panero,et al.  Effect of functionalized silica particles on cross-linked poly(vinyl alcohol) proton conducting membranes , 2008 .

[125]  A. Arof,et al.  Effect of storage time on the properties of PVA–KOH alkaline solid polymer electrolyte system , 2006 .

[126]  Silvia Licoccia,et al.  Nafion–TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs) , 2005 .

[127]  Silvia Licoccia,et al.  A Simple New Route to Covalent Organic/Inorganic Hybrid Proton Exchange Polymeric Membranes , 2006 .

[128]  J. Texter,et al.  Solvent-reversible poration in ionic liquid copolymers. , 2007, Angewandte Chemie.

[129]  R. Kannan,et al.  Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[130]  B. Gupta,et al.  Preparation of ion exchange membranes by radiation grafting of acrylic acid on FEP films , 2008 .

[131]  C. Laberty‐Robert,et al.  Original Fuel‐Cell Membranes from Crosslinked Terpolymers via a “Sol–gel” Strategy , 2010 .

[132]  Tomoya Higashihara,et al.  Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells , 2009 .

[133]  Jin Kon Kim,et al.  Breath figure patterns prepared by spin coating in a dry environment. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[134]  R. Bouchet,et al.  Proton conduction in acid doped polybenzimidazole , 1999 .

[135]  B. Yi,et al.  Cs2.5H0.5PWO40/SiO2 as addition self-humidifying composite membrane for proton exchange membrane fuel cells , 2007 .

[136]  Dong Soo Yun,et al.  Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid material. , 2006, Biomacromolecules.

[137]  R. Jerome,et al.  Impact of acid containing montmorillonite on the properties of Nafion® membranes , 2005 .

[138]  F. Babonneau,et al.  Chemical modification of alkoxide precursors , 1988 .

[139]  A. Morin,et al.  Ion track grafting: A way of producing low-cost and highly proton conductive membranes for fuel cell applications , 2010 .

[140]  D. Fritsch,et al.  Proton-conductive membranes of sulfonated Polyphenylsulfone , 2002 .

[141]  Silvia Licoccia,et al.  Sulfonated polyether ether ketone-based composite membranes doped with a tungsten-based inorganic proton conductor for fuel cell applications , 2006 .

[142]  M. Nogami,et al.  Structural and Transport Properties of Mixed Phosphotungstic Acid/Phosphomolybdic Acid/SiO2 Glass Membranes for H2/O2 Fuel Cells , 2007 .

[143]  Robert B. Moore,et al.  Asymmetric nafion/(zirconium oxide) hybrid membranes via in situ sol-gel chemistry , 1996 .

[144]  A. Aliev,et al.  Porous silica and polysilsesquioxane with covalently linked phosphonates and phosphonic acids , 2000 .

[145]  Nikhil H. Jalani,et al.  The effect of equivalent weight, temperature, cationic forms, sorbates, and nanoinorganic additives on the sorption behavior of Nafion ® , 2005 .

[146]  V. Tricoli,et al.  Zeolite–Nafion composites as ion conducting membrane materials , 2003 .

[147]  Deborah J. Jones,et al.  Advances in the Development of Inorganic-Organic Membranes for Fuel Cell Applications , 2008 .

[148]  M. Kakimoto,et al.  Feature article. Preparation of new polyimide–silica hybrid materials via the sol–gel process , 1992 .

[149]  Haoshen Zhou,et al.  A self-ordered, crystalline glass, mesoporous nanocomposite with high proton conductivity of 2 x 10(-2) S cm-1 at intermediate temperature. , 2005, Journal of the American Chemical Society.

[150]  Joseph M. Norbeck,et al.  Nafion-bifunctional silica composite proton conductive membranes , 2002 .

[151]  W. Smyrl,et al.  Polymer-zeolite composite membranes for direct methanol fuel cells , 2003 .

[152]  E. Quartarone,et al.  PVDF and P(VDF-HFP)-based proton exchange membranes , 2004 .

[153]  B. Yi,et al.  Carbon nanotubes reinforced nafion composite membrane for fuel cell applications , 2006 .

[154]  S. Shishatskiy,et al.  Modification of proton conductive polymer membranes with phosphonated polysilsesquioxanes , 2008 .

[155]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .

[156]  Michael A. Hickner,et al.  Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications , 2003 .

[157]  Shih-Wei Chuang,et al.  Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells , 2007 .

[158]  M. Guiver,et al.  Toward Improved Conductivity of Sulfonated Aromatic Proton Exchange Membranes at Low Relative Humidity , 2008 .

[159]  I. Honma,et al.  Organic/inorganic nano-composites for high temperature proton conducting polymer electrolytes , 2003 .

[160]  Suzana P. Nunes,et al.  Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution: Morphology and thermal analysis , 1998 .

[161]  Silvia Licoccia,et al.  Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications , 2008 .

[162]  B. Freeman,et al.  Water Sorption, Proton Conduction, and Methanol Permeation Properties of Sulfonated Polyimide Membranes Cross-Linked with N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic Acid (BES) , 2006 .

[163]  D. Brandell,et al.  Molecular dynamics modeling of proton transport in nafion and hyflon nanostructures. , 2010, The journal of physical chemistry. B.

[164]  G. Alberti,et al.  Composite Membranes for Medium-Temperature PEM Fuel Cells , 2003 .

[165]  Joanna J. Smith,et al.  Preparation and Proton Conductivity of Sulfonated Polymer-Modified Sintered and Self-Assembled Silica Colloidal Crystals , 2009 .

[166]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[167]  B. Améduri From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. , 2009, Chemical reviews.

[168]  B. Scrosati,et al.  Proton-conducting membranes based on protic ionic liquids , 2008 .

[169]  S. Cooper,et al.  Anomalous small-angle x-ray scattering from nickel-neutralized ionomers. 2. Semicrystalline polymer matrixes , 1990 .

[170]  A. Lehmani,et al.  Surface morphology of Nafion 117 membrane by tapping mode atomic force microscope , 1998 .

[171]  Huanting Wang,et al.  Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels. , 2003, Journal of the American Chemical Society.

[172]  Adélio Mendes,et al.  Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures , 2005 .

[173]  A. Vioux,et al.  Non‐Aqueous Routes to Sol–Gel , 1996 .

[174]  C. W. Lin,et al.  Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications , 2005 .

[175]  Ravindra Datta,et al.  Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells , 2005 .

[176]  D. Curtin,et al.  Advanced materials for improved PEMFC performance and life , 2004 .

[177]  Juin-Yih Lai,et al.  Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells , 2010 .

[178]  K. Schmidt-Rohr,et al.  19F and 13C NMR Signal Assignment and Analysis in a Perfluorinated Ionomer (Nafion) by Two-Dimensional Solid-State NMR , 2004 .

[179]  S. Licoccia,et al.  Proton-conducting electrolytes based on silylated and sulfonated polyetheretherketone: Synthesis and characterization , 2010 .

[180]  P. Mather,et al.  Sulfonated Polysulfone/POSS Nanofiber Composite Membranes for PEM Fuel Cells , 2010 .

[181]  K. Prater The renaissance of the solid polymer fuel cell , 1990 .

[182]  K. Mauritz,et al.  Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 1. Infrared spectroscopic studies , 1989 .

[183]  Y. Ein‐Eli,et al.  Acid‐Functionalized Mesostructured Aluminosilica for Hydrophilic Proton Conduction Membranes , 2007 .

[184]  K. Mauritz,et al.  Durability enhancement of Nafion® fuel cell membranes via in situ sol-gel-derived titanium dioxide reinforcement , 2009 .

[185]  B. Scrosati,et al.  A composite proton-conducting membrane based on a poly(vinylidene)fluoride-poly(acrylonitrile), PVdF-PAN blend , 2004 .

[186]  C. Laberty‐Robert,et al.  Design, Synthesis, and Properties of Inorganic and Hybrid Thin Films Having Periodically Organized Nanoporosity† , 2008 .

[187]  S. Ray,et al.  Recent Progress on Nafion-Based Nanocomposite Membranes for Fuel Cell Applications , 2009 .

[188]  R. Backov Combining soft matter and soft chemistry: integrative chemistry towards designing novel and complex multiscale architectures. , 2006, Soft matter.

[189]  Bio-inspired synthetic pathways and beyond: integrative chemistry , 2008 .

[190]  K. M. Lee,et al.  Composite Nanofiber Network Membranes for PEM Fuel Cells , 2008 .

[191]  C. Debiemme-Chouvy,et al.  Proton Insertion Properties in a Hybrid Membrane/Conducting Polymer Bilayer Investigated by AC Electrogravimetry , 2010 .

[192]  Wenzheng Li,et al.  Nafion/Zeolite Nanocomposite Membrane by in Situ Crystallization for a Direct Methanol Fuel Cell , 2006 .

[193]  V. Antonucci,et al.  Investigation of the electrochemical behaviour in DMFCs of chabazite and clinoptilolite-based composite membranes , 2005 .

[194]  Wu Xu,et al.  Ionic liquids: Ion mobilities, glass temperatures, and fragilities , 2003 .

[195]  J. Otomo,et al.  Microstructure development of mesoporous silica thin films with pore channels aligned perpendicularly to electrode surfaces and application to proton conducting composite electrolyte membranes , 2006 .

[196]  Arne Thomas,et al.  Proton Conductivity Enhancement by Nanostructural Control of Poly(benzimidazole)‐Phosphoric Acid Adducts , 2008 .

[197]  M. Nogami,et al.  Proton-conducting Ordered Mesostructured Silica Monoliths , 2006 .

[198]  Christopher W. Jones,et al.  Organic-functionalized molecular sieves as shape-selective catalysts , 1998, Nature.

[199]  Hiroyuki Uchida,et al.  Self‐Humidifying Polymer Electrolyte Membranes for Fuel Cells , 1996 .

[200]  S. V. Davis,et al.  Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction , 1995 .

[201]  Clément Sanchez,et al.  Biomimetism and bioinspiration as tools for the design of innovative materials and systems , 2005, Nature materials.

[202]  Jian‐mei Lu,et al.  Protic Ionic Liquid-Based Hybrid Proton-Conducting Membranes for Anhydrous Proton Exchange Membrane Application , 2010 .

[203]  Bradley F. Chmelka,et al.  Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups , 2000 .

[204]  S. Licoccia,et al.  SPEEK/PPSU-based organic–inorganic membranes: proton conducting electrolytes in anhydrous and wet environments , 2006 .

[205]  Eunja Kim,et al.  Nanoscale building blocks for the development of novel proton exchange membrane fuel cells. , 2008, Journal of Physical Chemistry B.

[206]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[207]  J. Bregman,et al.  Inorganic ion exchange membranes , 1965 .

[208]  G. Ozin Panoscopic materials: synthesis over ‘all’length scales , 2000 .

[209]  Haruyuki Okamura,et al.  Synthesis of random and block copolymers of styrene and styrenesulfonic acid with low polydispersity using nitroxide-mediated living radical polymerization technique , 2002 .

[210]  Capucine Sassoye,et al.  “Chimie douce”: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials , 2010, Comptes Rendus Chimie.

[211]  G. Gebel,et al.  NMR and pulsed field gradient NMR approach of water sorption properties in Nafion at low temperature. , 2009, The journal of physical chemistry. B.

[212]  D. Bélanger,et al.  Characterization and transport properties of Nafion/polyaniline composite membranes. , 2005, The journal of physical chemistry. B.

[213]  Y. Si,et al.  Nafion-Teflon- Zr ( HPO 4 ) 2 Composite Membranes for High-Temperature PEMFCs , 2004 .

[214]  Nethika S. Suraweera,et al.  On the Relationship between Polymer Electrolyte Structure and Hydrated Morphology of Perfluorosulfonic Acid Membranes , 2010 .

[215]  M. Miyayama,et al.  Proton-Conducting Properties and Microstructure of Hydrated Tin Dioxide and Hydrated Zirconia , 2004 .

[216]  A. Kaltbeitzel,et al.  Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. , 2007, Physical chemistry chemical physics : PCCP.

[217]  S. Srinivasan,et al.  Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects , 2001 .

[218]  Mark E. Davis,et al.  Synthesis and proton conductivity of sulfonic acid functionalized zeolite BEA nanocrystals , 2005 .

[219]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[220]  G. Robertson,et al.  Aromatic Poly(ether ketone)s with Pendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Method for Proton Exchange Membranes , 2007 .

[221]  Huanting Wang,et al.  CONTROLLING SIZE AND YIELD OF ZEOLITE Y NANOCRYSTALS USING TETRAMETHYLAMMONIUM BROMIDE , 2003 .

[222]  K. Tadanaga,et al.  Medium temperature range characterization as a proton conductor for phosphosilicate dry gels containing large amounts of phosphorus , 2001 .

[223]  Angela M Belcher,et al.  Programmable assembly of nanoarchitectures using genetically engineered viruses. , 2005, Nano letters.

[224]  S. Kaliaguine,et al.  Sulfonated polyether ether ketone based composite polymer electrolyte membranes , 2001 .

[225]  G. Alberti,et al.  Inorganic ion exchange membranes consisting of microcrystals of zirconium phosphate supported by Kynar , 1978 .

[226]  S. Licoccia,et al.  Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids , 2006 .

[227]  J. Maier,et al.  About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds , 2005 .

[228]  M. Bardet,et al.  Degradation of a sulfonated aryl ether ketone model compound in oxidative media (sPAEK) , 2009 .

[229]  I. Honma,et al.  High temperature proton conducting hybrid polymer electrolyte membranes , 2002 .

[230]  Ronghuan He,et al.  Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors , 2003 .

[231]  Wei Cui,et al.  New sulfonated engineering polymers via the metalation route. II. Sulfinated/sulfonated poly(ether sulfone) PSU Udel and its crosslinking , 1998 .

[232]  K. Tadanaga,et al.  Proton conductivities of sol–gel derived phosphosilicate gels in medium temperature range with low humidity , 2002 .

[233]  Michael D. Guiver,et al.  Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications , 2000 .

[234]  H. Kawai,et al.  Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum , 1982 .

[235]  B. Scrosati,et al.  Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes , 2001 .

[236]  Jingwei Hu,et al.  Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity , 2006 .

[237]  A. Virkar,et al.  Composite Nafion Membranes Containing Nanosize TiO2 ∕ SnO2 for Proton Exchange Membrane Fuel Cells , 2008 .

[238]  P. Pernice,et al.  Solid state NMR study of phosphosilicate gels , 2004 .

[239]  Masayuki Nogami,et al.  Inorganic–organic hybrid membranes with anhydrous proton conduction prepared from tetramethoxysilane/methyl-trimethoxysilane/trimethylphosphate and 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide for H2/O2 fuel cells , 2010 .

[240]  Supramaniam Srinivasan,et al.  Analysis of proton exchange membrane fuel cell performance with alternate membranes , 1995 .

[241]  M. Nogami,et al.  Ordered mesoporous phosphosilicate glass electrolyte film with low area specific resistivity. , 2003, Chemical communications.

[242]  G. Alberti,et al.  Inorganic ion-exchange membranes made of acid salts of tetravalent metals. A short review☆ , 1983 .

[243]  S. Licoccia,et al.  Composite Mesoporous Titania Nafion-Based Membranes for Direct Methanol Fuel Cell Operation at High Temperature , 2005 .

[244]  Antonino S. Aricò,et al.  Nafion–TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance , 2005 .

[245]  F. Niepceron,et al.  Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles , 2009 .

[246]  George Georgiou,et al.  Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires , 2004, Science.

[247]  S. Licoccia,et al.  Titania Nanosheets (TNS)/Sulfonated Poly Ether Ether Ketone (SPEEK) Nanocomposite Proton Exchange Membranes for Fuel Cells† , 2010 .

[248]  Enrico Negro,et al.  Structure-relaxation interplay of a new nanostructured membrane based on tetraethylammonium trifluoromethanesulfonate ionic liquid and neutralized nafion 117 for high-temperature fuel cells. , 2010, Journal of the American Chemical Society.

[249]  Huanting Wang,et al.  Homogeneous polymer–zeolite nanocomposite membranes by incorporating dispersible template-removed zeolite nanocrystals , 2002 .

[250]  B. Scrosati,et al.  Physical properties of proton conducting membranes based on a protic ionic liquid. , 2007, The journal of physical chemistry. B.

[251]  Xingwang Zhang,et al.  Enhanced Proton Conduction in Polymer Electrolyte Membranes as Synthesized by Polymerization of Protic Ionic Liquid-Based Microemulsions , 2009 .

[252]  Yun Jung Lee,et al.  Biologically activated noble metal alloys at the nanoscale: for lithium ion battery anodes. , 2010, Nano letters.

[253]  H. Ohno,et al.  Proton-conducting ionic liquids based upon multivalent anions and alkylimidazolium cations. , 2006, Chemical communications.

[254]  J. Durand,et al.  Studies of the hydrolysis of ethyl and tert-butyl phosphonates covalently bonded to silica xerogels , 2002 .

[255]  C. Detrembleur,et al.  Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications , 2007 .

[256]  Ying‐Ling Liu,et al.  Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes , 2009 .

[257]  David P. Wilkinson,et al.  High temperature PEM fuel cells , 2006 .

[258]  A. Herring Inorganic–Polymer Composite Membranes for Proton Exchange Membrane Fuel Cells , 2006 .

[259]  D. Brandell,et al.  Molecular dynamics studies of the Nafion®, Dow® and Aciplex® fuel-cell polymer membrane systems , 2007, Journal of molecular modeling.

[260]  K. Tadanaga,et al.  Proton conductivity at medium temperature range and chemical durability of phosphosilicate gels added with a third component , 2003 .

[261]  Robert B. Moore,et al.  Novel Nafion/ORMOSIL Hybrids via in Situ Sol-Gel Reactions. 1. Probe of ORMOSIL Phase Nanostructures by Infrared Spectroscopy , 1995 .

[262]  U. Bunz,et al.  Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials , 2006 .

[263]  P. Jannasch,et al.  Polysulfone ionomers for proton-conducting fuel cell membranes - 2. Sulfophenylated polysulfones and polyphenylsulfones , 2005 .

[264]  Changpeng Liu,et al.  Polyelectrolyte complexes of chitosan and phosphotungstic acid as proton-conducting membranes for direct methanol fuel cells , 2007 .

[265]  F. Alloin,et al.  Fluorinated organic chemicals: Prospects in New Electrochemical Energy Technologies , 2006 .

[266]  P. Colomban,et al.  Nanostructure of Nafion® membranes at different states of hydration , 2001 .

[267]  M. Yoshitake,et al.  Characterization of Flemion® membranes for PEFC , 1998 .

[268]  E. Peled,et al.  Novel proton-exchange membrane based on single-step preparation of functionalized ceramic powder containing surface-anchored sulfonic acid , 2008 .

[269]  Suzana P. Nunes,et al.  Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells , 2002 .