A meshless model for transient heat conduction in functionally graded materials

[1]  Wen Chen Meshfree boundary particle method applied to Helmholtz problems , 2002 .

[2]  M. Ingber A Triple Reciprocity Boundary ElementMethod For Transient Heat ConductionAnalysis , 1970 .

[3]  Wen Chen,et al.  High-order fundamental and general solutions of convection-diffusion equation and their applications with boundary particle method , 2002, ArXiv.

[4]  Transient non‐linear heat conduction–radiation problems—a boundary element formulation , 1999 .

[5]  M. Golberg,et al.  Discrete projection methods for integral equations , 1996 .

[6]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[7]  C. Brebbia,et al.  A new approach to free vibration analysis using boundary elements , 1983 .

[8]  Vladimir Sladek,et al.  Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method , 2003 .

[9]  Masataka Tanaka,et al.  Dual reciprocity boundary element analysis of nonlinear diffusion: temporal discretization , 1999 .

[10]  B. Šarler,et al.  Iterative solution of systems of equations in the dual reciprocity boundary element method for the diffusion equation , 1998 .

[11]  H. Gutfreund,et al.  Potential methods in the theory of elasticity , 1965 .

[12]  Carlos Alberto Brebbia,et al.  The multiple-reciprocity method. A new approach for transforming BEM domain integrals to the boundary , 1989 .

[13]  S. Atluri,et al.  A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach , 1998 .

[14]  Günther Kuhn,et al.  Dual reciprocity BEM without matrix inversion for transient heat conduction , 2002 .

[15]  C. S. Chen,et al.  A mesh free approach using radial basis functions and parallel domain decomposition for solving three‐dimensional diffusion equations , 2004 .

[16]  J. T. Katsikadelis Keynote AddressThe Analog Equation Method - A PowerfulBEM-based Solution Technique For SolvingLinear And Nonlinear Engineering Problems , 1970 .

[17]  Q.,et al.  APPLICATION OF HYBRID-TREFFTZ ELEMENT APPROACH TO TRANSIENT HEAT CONDUCTION ANALYSIS , 2003 .

[18]  Qing Hua Qin,et al.  Application of hybrid-Trefftz element approach to transient heat conduction analysis , 1996 .

[19]  Youssef F. Rashed,et al.  Convergence and stability of the method of meshless fundamental solutions using an array of randomly distributed sources , 2004 .