Tracing floral and geographical origins of honeys by potentiometric and voltammetric electronic tongue

[1]  J. Gardner Detection of vapours and odours from a multisensor array using pattern recognition Part 1. Principal component and cluster analysis , 1991 .

[2]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[3]  C. Di Natale,et al.  The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors , 1999 .

[4]  Ingemar Lundström,et al.  The combination of an electronic tongue and an electronic nose , 1999 .

[5]  Kenshi Hayashi,et al.  Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor , 2001 .

[6]  H. Stone,et al.  Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices , 2002 .

[7]  A. Riul,et al.  An artificial taste sensor based on conducting polymers. , 2003, Biosensors & bioelectronics.

[8]  C. Natale,et al.  Evaluation of Italian wine by the electronic tongue: recognition, quantitative analysis and correlation with human sensory perception , 2003 .

[9]  Peter D. Wentzell,et al.  Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures , 2003 .

[10]  F. Winquist,et al.  Recognition of six microbial species with an electronic tongue , 2003 .

[11]  Atiqur Rahman,et al.  A microcontroller-based taste sensing system for the verification of Eurycoma longifolia , 2004 .

[12]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[13]  E. Martinelli,et al.  Application of metalloporphyrins-based gas and liquid sensor arrays to the analysis of red wine , 2004 .

[14]  H. Sharghi,et al.  Application of artificial neural network to simultaneous potentiometric determination of silver(I), mercury(II) and copper(II) ions by an unmodified carbon paste electrode. , 2004, Talanta.

[15]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[16]  Maria Luz Rodriguez-Mendez,et al.  Electrochemical sensor array made from bisphthalocyanine modified carbon paste electrodes for discrimination of red wines , 2004 .

[17]  I. Lundström,et al.  An electronic tongue in the dairy industry , 2005 .

[18]  P. Ciosek,et al.  The recognition of beer with flow-through sensor array based on miniaturized solid-state electrodes. , 2006, Talanta.

[19]  J. Rodríguez-Nogales Approach to the quantification of milk mixtures by partial least-squares, principal component and multiple linear regression techniques , 2006 .

[20]  Jun Wang,et al.  Electronic nose technique potential monitoring mandarin maturity , 2006 .

[21]  Constantin Apetrei,et al.  Novel method based on carbon paste electrodes for the evaluation of bitterness in extra virgin olive oils , 2007 .

[22]  B. Nicolai,et al.  Analysis of tomato taste using two types of electronic tongues , 2008 .

[23]  C. Balla,et al.  Electronic tongue for sensing taste changes with apricots during storage , 2008 .

[24]  F. Winquist,et al.  Determination of detergents in washing machine wastewater with a voltammetric electronic tongue. , 2008, Talanta.

[25]  Jiewen Zhao,et al.  Identification of the green tea grade level using electronic tongue and pattern recognition , 2008 .

[26]  J. Brezmes,et al.  Fish freshness analysis using metallic potentiometric electrodes , 2008 .

[27]  Julie K. Lorenz,et al.  Evaluation of a taste sensor instrument (electronic tongue) for use in formulation development. , 2009, International journal of pharmaceutics.

[28]  G. Foca,et al.  Classification of red wines by chemometric analysis of voltammetric signals from PEDOT-modified electrodes. , 2009, Analytica chimica acta.

[29]  B. Nicolai,et al.  Instrumental measurement of beer taste attributes using an electronic tongue. , 2009, Analytica chimica acta.

[30]  Roberto Paolesse,et al.  Clinical analysis of human urine by means of potentiometric Electronic tongue. , 2009, Talanta.

[31]  Jun Wang,et al.  Classification of monofloral honeys from different floral origins and geographical origins based on rheometer. , 2010 .

[32]  J. Saja,et al.  Combination of an e-nose, an e-tongue and an e-eye for the characterisation of olive oils with different degree of bitterness. , 2010, Analytica chimica acta.

[33]  J. Lammertyn,et al.  Electronic tongue as a screening tool for rapid analysis of beer. , 2010, Talanta.

[34]  J. Suykens,et al.  A tutorial on support vector machine-based methods for classification problems in chemometrics. , 2010, Analytica chimica acta.

[35]  Mahdi Ghasemi-Varnamkhasti,et al.  Biomimetic-based odor and taste sensing systems to food quality and safety characterization: An overview on basic principles and recent achievements , 2010 .

[36]  Bipan Tudu,et al.  Instrumental testing of tea by combining the responses of electronic nose and tongue , 2012 .

[37]  R. Bandyopadhyay,et al.  Estimation of theaflavin content in black tea using electronic tongue , 2012 .

[38]  Rafael Masot,et al.  Design of an electronic system and its application to electronic tongues using variable amplitude pulse voltammetry and impedance spectroscopy , 2012 .

[39]  Eva Domenech,et al.  A potentiometric electronic tongue for the discrimination of honey according to the botanical origin. Comparison with traditional methodologies: Physicochemical parameters and volatile profile , 2012 .

[40]  Jun Wang,et al.  The evaluation of sugar content and firmness of non-climacteric pears based on voltammetric electronic tongue , 2013 .

[41]  Bipan Tudu,et al.  Identification of monofloral honey using voltammetric electronic tongue , 2013 .