Introducing Fractional-Order Dynamics to Sigma–Delta Modulators

The aim of the present paper is to investigate the performance of a fractional-order sigma–delta modulator wherein the integer-order integrator is replaced by a fractional integrator of order $$ \alpha \,(1 <\alpha < 2)$$α(1<α<2). A generalized approach to both linear frequency domain and non-linear time domain modeling and characterization of fractional-order sigma–delta modulator has been discussed. The performance of such modulator has been studied and compared with the corresponding integer-order modulators through simulation.

[1]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[2]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[3]  Ahmed S. Elwakil,et al.  On the Generalization of Second-Order Filters to the fractional-Order Domain , 2009, J. Circuits Syst. Comput..

[4]  H. V. Sorensen,et al.  An overview of sigma-delta converters , 1996, IEEE Signal Process. Mag..

[5]  K. Biswas,et al.  Performance study of fractional order integrator using single-component fractional order element , 2011, IET Circuits Devices Syst..

[6]  Georges L. Loum,et al.  An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension , 2007 .

[7]  I. Podlubny Fractional differential equations , 1998 .

[8]  G. Ablart,et al.  Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon , 2005 .

[9]  Ahmed S. Elwakil,et al.  High-quality factor asymmetric-slope band-pass filters: A fractional-order capacitor approach , 2012, IET Circuits Devices Syst..

[10]  A. Erdélyi Fractional integrals of generalized functions , 1972 .

[11]  Karabi Biswas,et al.  A Design Example of a Fractional-Order Kerwin–Huelsman–Newcomb Biquad Filter with Two Fractional Capacitors of Different Order , 2013, Circuits Syst. Signal Process..

[12]  Piotr Ostalczyk Fundamental properties of the fractional-order discrete-time integrator , 2003, Signal Process..

[13]  Debasmita Mondal,et al.  Design and performance study of phase‐locked loop using fractional‐order loop filter , 2015, Int. J. Circuit Theory Appl..

[14]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[15]  G. Ablart,et al.  The frequency response of a fractal photolithographic structure , 1997 .

[16]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..

[17]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .

[18]  Qaisar Abbas Naqvi,et al.  Fractional Curl Operator in Chiral Medium and Fractional Non-Symmetric Transmission Line , 2006 .

[19]  Costas Psychalinos,et al.  Ultra‐low voltage fractional‐order circuits using current mirrors , 2016, Int. J. Circuit Theory Appl..

[20]  A. El-Sayed,et al.  Fractional-order diffusion-wave equation , 1996 .

[21]  Tan Wen-chang,et al.  A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates , 2003 .

[22]  Hao Yu,et al.  Design and Analysis of CMOS-Based Terahertz Integrated Circuits by Causal Fractional-Order RLGC Transmission Line Model , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[23]  S. W. Park Analytical modeling of viscoelastic dampers for structural and vibration control , 2001 .