Er3+-doped tellurite waveguides deposited by excimer laser ablation

This paper reports on the optical properties of Erbium-doped zinc–tellurite (TeO 2–ZnCl2–ZnO) oxyhalide glass waveguides, deposited by reactive pulsed laser deposition (RPLD) on silica substrates. Er 3+ -doped zinc–tellurite glass (ZT) targets were ablated in oxygen dynamical flow at two different pressure values of 5 and 10 Pa by ArF excimer laser at the fluence of 3.7 J/cm 2 . The waveguiding properties of the deposited films were investigated by the m-line technique. The TE 0 mode excitation was used for photoluminescence (PL) and Raman measurements, in order to study the Erbium ion 4 I13/2 → 4 I15/2 transition and structural properties of the deposited films, respectively. Optical band gap and wavelength dependence of the real and imaginary parts of the refractive index were

[1]  Eric M. Yeatman,et al.  Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm , 1999 .

[2]  Fabio Pozzi,et al.  Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering , 2001 .

[3]  S. Hodgson,et al.  Multicomponent tellurite thin film materials with high refractive index , 2002 .

[4]  Edwin Yue-Bun Pun,et al.  Tellurite glasses for 1.3 μm optical amplifiers , 1999 .

[5]  Yasutake Ohishi,et al.  1.58-/spl mu/m broad-band erbium-doped tellurite fiber amplifier , 2002 .

[6]  D. Bäuerle Laser Processing and Chemistry , 1996 .

[7]  R. Almeida Structure of zinc halide based glasses , 1987 .

[8]  R. El-Mallawany,et al.  UV-IR spectra of new tellurite glasses , 2002 .

[9]  Shibin Jiang,et al.  Spectral properties of erbium-doped lead halotellurite glasses for 1.5 μm broadband amplification , 2000 .

[10]  J. S. Hayden,et al.  Ion-exchanged waveguide lasers in Er3+/Yb3+ codoped silicate glass. , 1999, Applied optics.

[11]  Animesh Jha,et al.  Structural origin of spectral broadening of 1.5-μm emission in Er 3+ -doped tellurite glasses , 2000 .

[12]  C. Afonso,et al.  Pulsed laser deposition of thin films for optical applications , 1996 .

[13]  Rui M. Almeida,et al.  Optical loss mechanisms in nanocomposite sol-gel planar waveguides , 1997, Optics & Photonics.

[14]  S. Turrell,et al.  Raman scattering in tellurium-metal oxyde glasses , 1995 .

[15]  D. N. Rao,et al.  Linear optical properties of niobium-based tellurite glasses , 2001 .

[16]  Carmen N. Afonso,et al.  Pulsed laser deposition for optical doping of active waveguide films , 1997 .

[17]  Mitsuho Yasu,et al.  Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition , 1983 .

[18]  M. Ferrari,et al.  Intrinsic defect related photoluminescence in TeO2-Based glasses , 2001 .

[19]  G. Grand,et al.  Low-loss PECVD silica channel waveguides for optical communications , 1990 .

[20]  R. Swanepoel Determination of the thickness and optical constants of amorphous silicon , 1983 .

[21]  Sylvia Turrell,et al.  Raman spectroscopic investigations of the effect of the doping metal on the structure of binary tellurium-oxide glasses , 1997 .

[22]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[23]  Masashi Abe,et al.  1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems , 2002 .