Systematic observer design for bilinear systems
暂无分享,去创建一个
[1] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[2] J. Schwartz,et al. On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .
[3] J. Gauthier,et al. Observability for any of a class of nonlinear systems , 1981 .
[4] S. Hara,et al. Minimal order state observers for bilinear systems , 1976 .
[5] M. Zeitz. Observability canonical (phase-variable) form for non-linear time-variable systems , 1984 .
[6] Y. Funahashi. Stable state estimator for bilinear systems , 1979 .
[7] N. Bose. Applied multidimensional systems theory , 1982 .
[8] B. Tibken,et al. A Novel Computer Approach to Optimal Feedback Control of Bilinear Systems , 1989 .
[9] B. Anderson,et al. Output feedback stabilization—Solution by algebraic geometry methods , 1977, Proceedings of the IEEE.
[10] David G. Luenberger,et al. State space analysis of control systems , 1967 .
[11] H. Keller. Entwurf nichtlinearer, zeitvarianter Beobachter durch Polvorgabe mit Hilfe einer Zwei-Schritt-Transformation / Design of nonlinear time-variant observers by pole-assignment via two-step-transformation , 1986 .
[12] I. Derese,et al. Nonlinear control of bilinear systems , 1980 .
[13] A. Krener,et al. Nonlinear observers with linearizable error dynamics , 1985 .
[14] G. Bornard,et al. Observability for any u(t) of a class of nonlinear systems , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.