Nine Point-EDGSOR Iterative Method for the Finite Element Solution of 2D Poisson Equations

In previous studies, the 4 Point-Explicit Decoupled Group (EDG) iterative method without or with a weighted parameter, *** has been shown to be much faster as compared to the existing four point block iterative method. Due to the effectiveness of this method, the primary goal of this paper is to illustrate the advantage of the 9 Point-EDGSOR in solving two-dimensional Poisson equations by using the half-sweep triangle finite element approximation equation based on the Galerkin scheme. In fact, formulations of the 4, 6, and 9 Point-EDGSOR iterative methods are also presented. Results of numerical experiments are recorded to show the effectiveness of the 9 Point-EDGSOR method as compared to the 4, and 6 Point-EDGSOR methods.

[1]  P. E. Lewis,et al.  The Finite Element Method: Principles and Applications , 1991 .

[2]  David J. Evans,et al.  The explicit block relaxation method as a grid smoother in the multigrid v-cycle scheme , 1990, Int. J. Comput. Math..

[3]  Jack Dongarra,et al.  Computational Science - ICCS 2007, 7th International Conference, Beijing, China, May 27 - 30, 2007, Proceedings, Part III , 2007, ICCS.

[4]  Marina L. Gavrilova,et al.  Computational Science and Its Applications - ICCSA 2007, International Conference, Kuala Lumpur, Malaysia, August 26-29, 2007. Proceedings, Part I , 2007, ICCSA.

[5]  Jun Zhang Acceleration of five-point red-black Gauss-Seidel in multigrid for Poisson equation , 1996 .

[6]  Mohamed Othman,et al.  The Half-Sweep Iterative Alternating Decomposition Explicit (HSIADE) Method for Diffusion Equation , 2004, CIS.

[7]  Abdul Rahman Abdullah,et al.  A Comparative Study of Parallel Strategies for the Solution of Elliptic Pde's , 1996, Parallel Algorithms Appl..

[8]  Mohamed Othman,et al.  Red-Black Half-Sweep Iterative Method Using Triangle Finite Element Approximation for 2D Poisson Equations , 2007, International Conference on Computational Science.

[9]  David J. Evans,et al.  A Parallel four points modified explicit group algorithm on shared memory multiprocessors , 2004, Parallel Algorithms Appl..

[10]  E. H. Twizell Computational methods for partial differential equations , 1984 .

[11]  Seymour V. Parter Estimates for multigrid methods based on red-black Gauss-Seidel smoothings , 1988 .

[12]  Richard H. Gallagher,et al.  Finite elements in fluids , 1975 .

[13]  Abdul Rahman Abdullah The four point explicit decoupled group (EDG) Method: a fast poisson solver , 1991, Int. J. Comput. Math..

[14]  Azzam Ibrahim,et al.  Solving the two dimensional diffusion equation by the four point explicit decoupled group (edg) iterative method , 1995, Int. J. Comput. Math..

[15]  Robert Vichenevetsky Computer Methods for Partial Differential Equations: Elliptical Equations and the Finite Element Method , 1981 .

[16]  Mohamed Othman,et al.  Quarter-sweep iterative alternating decomposition explicit algorithm applied to diffusion equations , 2004, Int. J. Comput. Math..

[17]  M. Othman,et al.  An efficient four points modified explicit group poisson solver , 2000, Int. J. Comput. Math..

[18]  C. Fletcher Computational Galerkin Methods , 1983 .

[19]  Mohamed Othman,et al.  Red-Black EDG SOR Iterative Method Using Triangle Element Approximation for 2D Poisson Equations , 2007, ICCSA.

[20]  David J. Evans,et al.  Explicit De-coupled Group Iterative Methods and their Parallel Implementations , 1995, Parallel Algorithms Appl..

[21]  M. Othman,et al.  An efficient multigrid poisson solver , 1999, Int. J. Comput. Math..

[22]  J. W. Eastwood,et al.  Springer series in computational physics Editors: H. Cabannes, M. Holt, H.B. Keller, J. Killeen and S.A. Orszag , 1984 .

[23]  Mohamed Othman,et al.  The halfsweeps multigrid method as a fast multigrid poisson solver , 1998, Int. J. Comput. Math..

[24]  Yuxi Fu,et al.  Computational and Information Science, First International Symposium, CIS 2004, Shanghai, China, December 16-18, 2004, Proceedings , 2004, CIS.