Introduction to the Theory of Interior Point Methods

We discuss the basic concepts of interior point methods for linear programming, viz., duality, the existence of a strictly complementary solution, analytic centers and the central path with its properties. To solve the initialization problem we give an embedding of the primal and the dual problem in a skew-symmetric self-dual reformulation that has an obvious initial interior point. Finally, we consider the topic of interior point based sensitivity analysis.

[1]  Thomas L. Magnanti,et al.  Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria , 1981, Oper. Res..

[2]  D. Aucamp,et al.  The Computation of Shadow Prices in Linear Programming , 1982 .

[3]  James B. Orlin,et al.  Parametric linear programming and anti-cycling pivoting rules , 1988, Math. Program..

[4]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[5]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[6]  Harvey J. Greenberg,et al.  The use of the optimal partition in a linear programming solution for postoptimal analysis , 1994, Oper. Res. Lett..

[7]  Y. Ye,et al.  Combining Interior-Point and Pivoting Algorithms for Linear Programming , 1996 .

[8]  Yinyu Ye,et al.  A simplified homogeneous and self-dual linear programming algorithm and its implementation , 1996, Ann. Oper. Res..

[9]  M. Akgül A Note on Shadow Prices in Linear Programming , 1984 .

[10]  T. Gal Weakly redundant constraints and their impact on postoptimal analyses in LP , 1992 .

[11]  James R. Evans,et al.  DEGENERACY AND THE (MIS)INTERPRETATION OF SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING , 1982 .

[12]  Yinyu Ye,et al.  Convergence behavior of interior-point algorithms , 1993, Math. Program..

[13]  L. McLinden An analogue of Moreau's proximation theorem, with application to the nonlinear complementarity problem. , 1980 .

[14]  H. J. Greenberg An analysis of degeneracy , 1986 .

[15]  James E. Ward,et al.  Approaches to sensitivity analysis in linear programming , 1991 .

[16]  Shuzhong Zhang,et al.  Pivot rules for linear programming: A survey on recent theoretical developments , 1993, Ann. Oper. Res..

[17]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[18]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[19]  J. G. Evans,et al.  Postoptimal Analyses, Parametric Programming, and Related Topics , 1979 .

[20]  G. Knolmayer THE EFFECTS OF DEGENERACY ON COST-COEFFICIENT RANGES AND AN ALGORITHM TO RESOLVE INTERPRETATION PROBLEMS , 1984 .

[21]  Harvey M. Wagner,et al.  Shadow Prices: Tips and Traps for Managers and Instructors , 1990 .

[22]  John E. Beasley Advances in Linear and Integer Programming , 1996 .

[23]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[24]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[25]  Sanjay Mehrotra,et al.  Finding an interior point in the optimal face of linear programs , 1993, Math. Program..

[26]  J. Gauvin Ouelques Precisions Sur Les Prix Marginaux En Programmation Lineaire , 1980 .

[27]  T. Gal Shadow prices and sensitivity analysis in linear programming under degeneracy , 1986 .

[28]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[29]  T. Terlaky On lp programming , 1985 .