Hyperbolicity on Graph Operators

A graph operator is a mapping F : Γ → Γ′, where Γ and Γ′ are families of graphs. The different kinds of graph operators are an important topic in Discrete Mathematics and its applications. The symmetry of this operations allows us to prove inequalities relating the hyperbolicity constants of a graph G and its graph operators: line graph, Λ(G); subdivision graph, S(G); total graph, T(G); and the operators R(G) and Q(G). In particular, we get relationships such as δ(G) ≤ δ(R(G)) ≤ δ(G) + 1/2, δ(Λ(G)) ≤ δ(Q(G)) ≤ δ(Λ(G)) + 1/2, δ(S(G)) ≤ 2δ(R(G)) ≤ δ(S(G)) + 1 and δ(R(G)) − 1/2 ≤ δ(Λ(G)) ≤ 5δ(R(G)) + 5/2 for every graph which is not a tree. Moreover, we also derive some inequalities for the Gromov product and the Gromov product restricted to vertices.

[1]  Y. Cho,et al.  Discrete Groups , 1994 .

[2]  A. O. Houcine On hyperbolic groups , 2006 .

[3]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[4]  Jose Maria Sigarreta,et al.  New inequalities on the hyperbolicity constant of line graphs , 2014, Ars Comb..

[5]  H. Short,et al.  Notes on word hyperbolic groups , 1991 .

[6]  Bo-Yin Yang,et al.  The behavior of Wiener indices and polynomials of graphs under five graph decorations , 2007, Appl. Math. Lett..

[7]  Jose Maria Sigarreta,et al.  On the Hyperbolicity Constant of Line Graphs , 2011, Electron. J. Comb..

[8]  Zagreb Polynomials of Three Graph Operators , 2016 .

[9]  V. Lokesha,et al.  Smarandache-Zagreb Index on Three Graph Operators , 2010 .

[10]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[11]  M. Soto,et al.  Quelques proprietes topologiques des graphes et applications a Internet et aux reseaux , 2011 .

[12]  David Coudert,et al.  On the hyperbolicity of bipartite graphs and intersection graphs , 2016, Discret. Appl. Math..

[13]  R. Z. Norman,et al.  Some properties of line digraphs , 1960 .

[14]  A. Haefliger,et al.  Group theory from a geometrical viewpoint , 1991 .

[15]  Yilun Shang,et al.  Lack of Gromov-hyperbolicity in small-world networks , 2012 .

[16]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[17]  Yilun Shang Non-Hyperbolicity of Random Graphs with Given Expected Degrees , 2013 .

[18]  Shi Li,et al.  Traffic Congestion in Expanders, $(p,δ)$--Hyperbolic Spaces and Product of Trees , 2013, ArXiv.

[19]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[20]  Feodor F. Dragan,et al.  Core congestion is inherent in hyperbolic networks , 2016, SODA.

[21]  Yilun Shang Lack of Gromov-Hyperbolicity in Colored Random Networks , 2011 .

[22]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..

[23]  Edmond A. Jonckheere,et al.  Effective resistance criterion for negative curvature: Application to congestion control , 2016, 2016 IEEE Conference on Control Applications (CCA).

[24]  Jose Maria Sigarreta,et al.  Computing the hyperbolicity constant , 2011, Comput. Math. Appl..