Wavelet variance analysis for gappy time series

The wavelet variance is a scale-based decomposition of the process variance for a time series and has been used to analyze, for example, time deviations in atomic clocks, variations in soil properties in agricultural plots, accumulation of snow fields in the polar regions and marine atmospheric boundary layer turbulence. We propose two new unbiased estimators of the wavelet variance when the observed time series is ‘gappy,’ i.e., is sampled at regular intervals, but certain observations are missing. We deduce the large sample properties of these estimators and discuss methods for determining an approximate confidence interval for the wavelet variance. We apply our proposed methodology to series of gappy observations related to atmospheric pressure data and Nile River minima.

[1]  H. H. Prince Omar Toussoun,et al.  Memoire sur l'Histoire du Nil , 1926 .

[2]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[3]  T. Teichmann,et al.  The Measurement of Power Spectra , 1960 .

[4]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[5]  P. Major,et al.  Central limit theorems for non-linear functionals of Gaussian fields , 1983 .

[6]  Liudas Giraitis,et al.  CLT and other limit theorems for functionals of Gaussian processes , 1985 .

[7]  J. R. M. Hosking,et al.  FRACTIONAL DIFFERENCING MODELING IN HYDROLOGY , 1985 .

[8]  I. Zurbenko The spectral analysis of time series , 1986 .

[9]  M. Taqqu,et al.  Central limit theorems for quadratic forms in random variables having long-range dependence , 1987 .

[10]  T. Sun,et al.  A central limit theorem for non-instantaneous filters of a stationary Gaussian Process , 1987 .

[11]  Thomas P. Bronez,et al.  Spectral estimation of irregularly sampled multidimensional processes by generalized prolate spheroidal sequences , 1988, IEEE Trans. Acoust. Speech Signal Process..

[12]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[13]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[14]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[15]  Donald P. Percival,et al.  On estimation of the wavelet variance , 1995 .

[16]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[17]  Grant Foster,et al.  Wavelets for period analysis of unevenly sampled time series , 1996 .

[18]  Rainer von Sachs,et al.  Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra , 1997 .

[19]  Josselin Garnier Probability Theory and Related Fields. Manuscript-nr. Stochastic Invariant Imbedding Application to Stochastic Diierential Equations with Boundary Conditions , 2007 .

[20]  P. Tchamitchian,et al.  Wavelet analysis of signals with gaps , 1998 .

[21]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[22]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[23]  Murad S. Taqqu,et al.  Central limit theorems for quadratic forms with time-domain conditions , 1998 .

[24]  P. Morettin,et al.  A wavelet analysis for time series , 1998 .

[25]  D. Percival,et al.  Total variance, an estimator of long-term frequency stability [standards] , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  R. V. Sachs,et al.  Wavelets in time-series analysis , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Wilfredo Palma,et al.  Miscellanea. Statistical analysis of incomplete long-range dependent data , 1999 .

[28]  V Pichot,et al.  Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. , 1999, Journal of applied physiology.

[29]  Erik G. Larsson,et al.  Adaptive Filter-bank Approach to Restoration and Spectral Analysis of Gapped Data* , 2000 .

[30]  A. Walden,et al.  Wavelet Methods for Time Series Analysis , 2000 .

[31]  Albert Rango,et al.  Length‐Scale analysis of surface albedo, temperature, and normalized difference vegetation index in desert grassland , 2000 .

[32]  G. Nason,et al.  Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum , 2000 .

[33]  A. Walden,et al.  Statistical Properties and Uses of the Wavelet Variance Estimator for the Scale Analysis of Time Series , 2000 .

[34]  Peter Guttorp,et al.  Wavelet analysis of covariance with application to atmospheric time series , 2000 .

[35]  Thomas Strohmer,et al.  On the Reconstruction of Irregularly Sampled Time Series , 2000 .

[36]  D. Labat,et al.  Introduction of Wavelet Analyses to Rainfall/Runoffs Relationship for a Karstic Basin: The Case of Licq‐Atherey Karstic System (France) , 2001, Ground water.

[37]  Stanisław Ryszard Massel,et al.  Wavelet analysis for processing of ocean surface wave records , 2001 .

[38]  R. M. Lark,et al.  Changes in variance and correlation of soil properties with scale and location: analysis using an adapted maximal overlap discrete wavelet transform , 2001 .

[39]  E. Candès,et al.  Recovering edges in ill-posed inverse problems: optimality of curvelet frames , 2002 .

[40]  Andrew T. Walden,et al.  From Blackman-Tukey pilot estimators to wavelet packet estimators: a modern perspective on an old spectrum estimation idea , 2002, Signal Process..

[41]  J. Rybák,et al.  TEMPORAL VARIABILITY OF THE CORONAL GREEN-LINE INDEX (1947–1998) , 2002 .

[42]  P. Guttorp,et al.  Testing for homogeneity of variance in time series: Long memory, wavelets, and the Nile River , 2002 .

[43]  S. Mallat,et al.  Thresholding estimators for linear inverse problems and deconvolutions , 2003 .

[44]  Spiridon Penev,et al.  Wavelet-based estimation with multiple sampling rates , 2004 .

[45]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[46]  Donald B. Percival,et al.  Asymptotic decorrelation of between-Scale Wavelet coefficients , 2005, IEEE Transactions on Information Theory.

[47]  Christopher R. Genovese,et al.  Confidence sets for nonparametric wavelet regression , 2005, math/0505632.

[48]  D. Percival,et al.  Wavelet Analysis of Variance for Time Series with Missing Values , 2008 .

[49]  田中 勝人 D. B. Percival and A. T. Walden: Wavelet Methods for Time Series Analysis, Camb. Ser. Stat. Probab. Math., 4, Cambridge Univ. Press, 2000年,xxvi + 594ページ. , 2009 .

[50]  David R. Brillinger,et al.  Time Series , 2018, Randomization, Bootstrap and Monte Carlo Methods in Biology.