Modifications of Patterson-Wiedemann functions for cryptographic applications

Three basic properties of Boolean functions to be useful for cryptographic purposes are balancedness, high algebraic degree, and high nonlinearity. In addition, strict avalanche criteria and propagation characteristics are required for design of S-boxes. We introduce methods to modify the Patterson-Wiedemann (19983, 1990) and bent functions to achieve the above cryptographic properties. In the process, we are able to answer some open questions about Boolean functions.

[1]  Yuliang Zheng,et al.  GAC - the Criterion for Global Avalance Characteristics of Cryptographic Functions , 1995, J. Univers. Comput. Sci..

[2]  Stafford E. Tavares,et al.  On the Design of S-Boxes , 1985, CRYPTO.

[3]  James L. Massey,et al.  A spectral characterization of correlation-immune combining functions , 1988, IEEE Trans. Inf. Theory.

[4]  Jennifer Seberry,et al.  Nonlinearly Balanced Boolean Functions and Their Propagation Characteristics (Extended Abstract) , 1993, CRYPTO.

[5]  Claude Carlet,et al.  On Correlation-Immune Functions , 1991, CRYPTO.

[6]  Hans Dobbertin,et al.  Construction of Bent Functions and Balanced Boolean Functions with High Nonlinearity , 1994, FSE.

[7]  Nicholas J. Patterson,et al.  Correction to 'The covering radius of the (215, 16) Reed-Muller code is at least 16276' (May 83 354-356) , 1990, IEEE Trans. Inf. Theory.

[8]  Palash Sarkar,et al.  Cryptographically significant Boolean functions with five valued Walsh spectra , 2002, Theor. Comput. Sci..

[9]  Réjane Forré,et al.  The Strict Avalanche Criterion: Spectral Properties of Boolean Functions and an Extended Definition , 1988, CRYPTO.

[10]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[11]  Joos Vandewalle,et al.  Propagation Characteristics of Boolean Functions , 1991, EUROCRYPT.

[12]  Kaoru Kurosawa,et al.  Design of SAC/PC(l) of Order k Boolean Functions and Three Other Cryptographic Criteria , 1997, EUROCRYPT.

[13]  Palash Sarkar,et al.  Construction of Nonlinear Boolean Functions with Important Cryptographic Properties , 2000, EUROCRYPT.

[14]  C. Carlet On cryptographic propagation criteria for Boolean functions , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[15]  Joos Vandewalle,et al.  Boolean Functions Satisfying Higher Order Propagation Criteria , 1991, EUROCRYPT.

[16]  Nicholas J. Patterson,et al.  The covering radius of the (215, 16) Reed-Muller code is at least 16276 , 1983, IEEE Trans. Inf. Theory.