A New Metaphor-Free Metaheuristic Approach Based on Complex Networks and Bezier Curves

A metaheuristic method is an optimization technique that is generally inspired by natural or physical processes. The use of metaphors has created a tendency to reproduce existing algorithms with slight modifications or variations rather than encouraging the development of novel algorithmic techniques and principles. On the other hand, a complex network is a mathematical structure whose main characteristic is the ability to capture and analyze the intricate patterns and properties that emerge from the interactions between the elements that it connects. In this paper, a new metaphor-free metaheuristic algorithm based on complex networks and Bezier curves is presented. In this approach, candidate solutions are represented as nodes in a graph, whereas the connections between nodes or edges reflect the differences in their objective function values. Therefore, the graph provides a higher-level representation that captures the essential relationships and dependencies among the solutions. Once the graph is generated, the shortest path between each solution and the best solution is obtained. Then, the nodes obtained from this process are used as control points in the Bezier equation to generate the new agent position. Therefore, during the optimization process, the graph is continuously modified based on the evaluation of new candidate solutions and their objective function values, producing trajectories that allow the exploration and exploitation of the search space. The experimental results demonstrated the effectiveness of our approach by achieving competitive results compared to other well-known metaheuristic algorithms on various benchmark functions.

[1]  N. Pholdee,et al.  Many‑objective meta-heuristic methods for solving constrained truss optimisation problems: A comparative analysis , 2023, MethodsX.

[2]  N. Pholdee,et al.  A small fixed-wing UAV system identification using metaheuristics , 2022, Cogent Engineering.

[3]  Rahul Kottath,et al.  Ameliorated Follow The Leader: Algorithm and Application to Truss Design Problem , 2022, Structures.

[4]  Pradeep Jangir,et al.  A Decomposition based Multi-Objective Heat Transfer Search algorithm for structure optimization , 2022, Knowl. Based Syst..

[5]  L. Knapčíková,et al.  Recent Application of Dijkstra’s Algorithm in the Process of Production Planning , 2022, Applied Sciences.

[6]  Xiaowen Li,et al.  Book Image Distortion Correction Based on Bezier Curve Model , 2022, 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC).

[7]  L. Rêgo,et al.  Impact of macroeconomic variables on the topological structure of the Brazilian stock market: A complex network approach , 2022, Physica A: Statistical Mechanics and its Applications.

[8]  D. Sui,et al.  Well Path Design and Optimization Using Composite Cubic Bezier Curves , 2022, SPE Journal.

[9]  Dániel Ficzere Complex network theory to model 5G Network Slicing , 2022, NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium.

[10]  N. Pholdee,et al.  Performance enhancement of meta-heuristics through random mutation and simulated annealing-based selection for concurrent topology and sizing optimization of truss structures , 2022, Soft Computing.

[11]  Qi Liu,et al.  A dynamic stochastic search algorithm for high-dimensional optimization problems and its application to feature selection , 2022, Knowl. Based Syst..

[12]  Zafer Duraklı,et al.  A new approach based on Bezier curves to solve path planning problems for mobile robots , 2021, J. Comput. Sci..

[13]  M. Dorigo,et al.  Metaphor-based metaheuristics, a call for action: the elephant in the room , 2021, Swarm Intell..

[14]  Sen Xu,et al.  Multi-Sensor Complex Network Data Fusion Under the Condition of Uncertainty of Coupling Occurrence Probability , 2021, IEEE Sensors Journal.

[15]  Nantiwat Pholdee,et al.  Multi-Objective Teaching-Learning-Based Optimization for Structure Optimization , 2021, Smart Science.

[16]  Amir H. Gandomi,et al.  RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method , 2021, Expert Syst. Appl..

[17]  Nor Badrul Anuar,et al.  Applications of link prediction in social networks: A review , 2020, J. Netw. Comput. Appl..

[18]  Angélica S. Mata,et al.  Complex Networks: a Mini-review , 2020, Brazilian Journal of Physics.

[19]  J. Zhang,et al.  Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator , 2020, IEEE Access.

[20]  Artur Barreiros,et al.  Design Optimization Average-Based Algorithm , 2020, Informatica.

[21]  Yang Zhou,et al.  Predicting sectoral electricity consumption based on complex network analysis , 2019 .

[22]  Yuhui Shi,et al.  Metaheuristic research: a comprehensive survey , 2018, Artificial Intelligence Review.

[23]  Alireza Askarzadeh,et al.  A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm , 2016 .

[24]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[25]  Muaz A. Niazi,et al.  Introduction to the modeling and analysis of complex systems: a review , 2016, Complex Adapt. Syst. Model..

[26]  Daniel R. Lanning,et al.  Dijkstra's algorithm and Google maps , 2014, ACM Southeast Regional Conference.

[27]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[28]  Marte A. Ramírez-Ortegón,et al.  An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation , 2013, Applied Intelligence.

[29]  Xin-She Yang,et al.  Metaheuristic Applications in Structures and Infrastructures , 2013 .

[30]  F. Palomares Curvas de Bezier , 2012 .

[31]  Yuanzhe Xu,et al.  The Application of Dijkstra's Algorithm in the Intelligent Fire Evacuation System , 2012, 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics.

[32]  Marco Aiello,et al.  The Power Grid as a Complex Network: a Survey , 2011, ArXiv.

[33]  K. Davids,et al.  Networks as a novel tool for studying team ball sports as complex social systems. , 2011, Journal of Science and Medicine in Sport.

[34]  Mathématiques,et al.  Big-O Notation , 2010, Definitions.

[35]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[36]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[37]  R. Curry,et al.  Path Planning Based on Bézier Curve for Autonomous Ground Vehicles , 2008, Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008.

[38]  Beom Jun Kim,et al.  Network marketing on a small-world network , 2005, physics/0506122.

[39]  P. Srinivasan,et al.  Design and development of streamlined extrusion dies a Bezier curve approach , 2005 .

[40]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[41]  Kyu-Jin Lee,et al.  Bezier Curve Application in the Shape Optimization of Transonic Airfoils , 2000 .

[42]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[43]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[44]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[45]  Kalyanmoy Deb,et al.  Optimal design of a welded beam via genetic algorithms , 1991 .

[46]  Martin Ahlers,et al.  Role of Bézier curves and surfaces in the volkswagen CAD approach from 1967 to today , 1990, Comput. Aided Des..

[47]  John R. Koza,et al.  Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems , 1990 .

[48]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[49]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[50]  G. Farin Algorithms for rational Bézier curves , 1983 .

[51]  J. Sampson Adaptation in Natural and Artificial Systems (John H. Holland) , 1976 .

[52]  Pradeep Jangir,et al.  MOPGO: A New Physics-Based Multi-Objective Plasma Generation Optimizer for Solving Structural Optimization Problems , 2021, IEEE Access.

[53]  Ali Wagdy Mohamed,et al.  Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009-2019) , 2021, IEEE Access.

[54]  Jiajing Wu,et al.  Robustness of Interdependent Power Grids and Communication Networks: A Complex Network Perspective , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[55]  Arun Kumar Sangaiah,et al.  Metaheuristic Algorithms: A Comprehensive Review , 2018 .

[56]  Jessica Schulze,et al.  Objects Abstraction Data Structures And Design Using C , 2016 .

[57]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[58]  Christian Blum,et al.  Hybrid Metaheuristics: An Introduction , 2008, Hybrid Metaheuristics.

[59]  Gábor Szabó,et al.  Structure of complex networks , 2005 .

[60]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[61]  L. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[62]  F. Wilcoxon,et al.  Probability tables for individual comparisons by ranking methods. , 1947, Biometrics.