Identification of non-linear systems by recursive kernel regression estimates

Abstract Identification of non-linear, dynamical systems described by the Hammerstein model are discussed. Such a system consists of a multi-input single-output nonlinear, memoryless subsystem followed by a dynamic, linear subsystem. Outputs of both subsystems are corrupted by random noise. The parameters of the linear subsystem are identified by a correlation technique. The main contribution lies in estimating the non-linear, memoryless subsystem. The identification algorithm is based on the recursive kernel regression estimate. No restrictions are imposed on the functional form of the non-linearity as well on its continuity. We prove global convergence of the algorithm regardless of the distribution of the random input and for outputs with bounded moment of order greater than 2. The rate of convergence is obtained for the Lipschitz non-linearities and all input distributions.

[1]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[2]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[3]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[4]  Stephen P. Banks,et al.  Mathematical theories of nonlinear systems , 1988 .

[5]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[6]  Gary L. Wise,et al.  On the design of nonlinear discrete-time predictors , 1982, IEEE Trans. Inf. Theory.

[7]  Adam Krzyzak,et al.  Almost everywhere convergence of a recursive regression function estimate and classification , 1984, IEEE Trans. Inf. Theory.

[8]  R. Luus,et al.  A noniterative method for identification using Hammerstein model , 1971 .

[9]  W. Greblicki,et al.  Identification of discrete Hammerstein systems using kernel regression estimates , 1986 .

[10]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[11]  S. Billings,et al.  Non-linear system identification using the Hammerstein model , 1979 .

[12]  M. Pawlak On the series expansion approach to the identification of Hammerstein systems , 1991 .

[13]  Prakasa Rao Nonparametric functional estimation , 1983 .

[14]  Adam Krzyzak,et al.  The rates of convergence of kernel regression estimates and classification rules , 1986, IEEE Trans. Inf. Theory.

[15]  W. Stout Almost sure convergence , 1974 .

[16]  Wolfgang Härdle,et al.  Nonparametric Curve Estimation from Time Series , 1989 .

[17]  Steven C. Bass,et al.  Adaptive noise cancellation for a class of nonlinear, dynamic reference channels , 1985 .

[18]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[19]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[20]  P. Gallman,et al.  An iterative method for the identification of nonlinear systems using a Uryson model , 1975 .

[21]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[22]  Stamatis Cambanis,et al.  Signal identification after noisy nonlinear transformations , 1980, IEEE Trans. Inf. Theory.

[23]  W. Ziemer Weakly differentiable functions , 1989 .

[24]  Luc Devroye,et al.  Nonparametric Density Estimation , 1985 .