Geometric analysis of the condition of the convex feasibility problem
暂无分享,去创建一个
[1] C. Jordan. Essai sur la géométrie à $n$ dimensions , 1875 .
[2] I. Holopainen. Riemannian Geometry , 1927, Nature.
[3] T. Bonnesen,et al. Theorie der Konvexen Körper , 1934 .
[4] H. Weyl. On the Volume of Tubes , 1939 .
[5] J. G. Wendel. A Problem in Geometric Probability. , 1962 .
[6] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[7] L. Nachbin,et al. The Haar integral , 1965 .
[8] J. Munkres,et al. Calculus on Manifolds , 1965 .
[9] H. Fédérer. Geometric Measure Theory , 1969 .
[10] H. Schubert,et al. O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .
[11] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[12] W. J. Firey. An integral-geometric meaning for lower order area functions of convex bodies , 1972 .
[13] W. Boothby. An introduction to differentiable manifolds and Riemannian geometry , 1975 .
[14] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[15] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[16] J. Thorpe. Elementary Topics in Differential Geometry , 1979 .
[17] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[18] Gene H. Golub,et al. Matrix computations , 1983 .
[19] Donald St. P. Richards,et al. Hypergeometric Functions of Scalar Matrix Argument are Expressible in Terms of Classical Hypergeometric Functions , 1985 .
[20] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[21] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[22] E. Teufel. Kinematische Berührformeln in Räumen konstanter Krümmung , 1988 .
[23] R. Stanley. Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .
[24] F. Brenti,et al. Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .
[25] Kinematische Berührformeln in Riemannschen homogenen Räumen , 1989 .
[26] R. Schneider,et al. CHAPTER 5.1 – Integral Geometry , 1993 .
[27] A simple proof of an approximation theorem of H. Minkowski , 1993 .
[28] J. Renegar. Some perturbation theory for linear programming , 1994, Math. Program..
[29] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[30] James Renegar,et al. Incorporating Condition Measures into the Complexity Theory of Linear Programming , 1995, SIAM J. Optim..
[31] James Renegar,et al. Linear programming, complexity theory and elementary functional analysis , 1995, Math. Program..
[32] Daniel A. Klain,et al. Introduction to Geometric Probability , 1997 .
[33] L. Trefethen,et al. Numerical linear algebra , 1997 .
[34] Steve Smale,et al. Complexity theory and numerical analysis , 1997, Acta Numerica.
[35] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[36] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[37] G. Pataki. The Geometry of Semidefinite Programming , 2000 .
[38] Javier Peña,et al. Understanding the Geometry of Infeasible Perturbations of a Conic Linear System , 1999, SIAM J. Optim..
[39] James Renegar,et al. A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.
[40] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[41] Fuchang Gao,et al. Intrinsic volumes and polar sets in spherical space , 2002 .
[42] P. Absil,et al. Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .
[43] Zizhong Chen,et al. Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..
[44] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[45] P. Koev,et al. On the largest principal angle between random subspaces , 2006 .
[46] F. Cucker,et al. Smoothed analysis of complex conic condition numbers , 2006, math/0605635.
[47] Felipe Cucker,et al. General formulas for the smoothed analysis of condition numbers , 2006 .
[48] Riemannian Geometry: Riemannian Volume , 2006 .
[49] S. Ole Warnaar,et al. The importance of the Selberg integral , 2007, 0710.3981.
[50] Javier Peña,et al. A primal-dual symmetric relaxation for homogeneous conic systems , 2007, J. Complex..
[51] Terence Tao,et al. The condition number of a randomly perturbed matrix , 2007, STOC '07.
[52] Gregorio Malajovich,et al. On the number of minima of a random polynomial , 2008, J. Complex..
[53] Felipe Cucker,et al. The probability that a slightly perturbed numerical analysis problem is difficult , 2006, Math. Comput..
[54] 採編典藏組. Society for Industrial and Applied Mathematics(SIAM) , 2008 .
[55] Robert M. Freund,et al. A geometric analysis of Renegar’s condition number, and its interplay with conic curvature , 2007, Math. Program..
[56] Bernd Sturmfels,et al. The algebraic degree of semidefinite programming , 2010, Math. Program..
[57] F. Cucker,et al. Coverage processes on spheres and condition numbers for linear programming , 2007, 0712.2816.
[58] Peter Bürgisser,et al. Smoothed Analysis of Condition Numbers , 2011 .
[59] Felipe Cucker,et al. Adversarial smoothed analysis , 2010, J. Complex..
[60] Felipe Cucker,et al. Smoothed Analysis of Moore-Penrose Inversion , 2010, SIAM J. Matrix Anal. Appl..
[61] Peter Bürgisser,et al. Robust smoothed analysis of a condition number for linear programming , 2012, Math. Program..