Low-Loss and Wideband Package Transitions for Microwave and Millimeter-Wave MCMs

This paper presents high-performance flip-chip, through-substrate via and board-level BGA transition designs applicable in microwave and millimeter-wave multichip module (MCM) assemblies. Full-wave electromagnetic analysis was performed to achieve optimized transition structures. Interconnection test structures were fabricated in ceramic substrates and their performance was validated using on-wafer scattering parameter measurements. Both the flip-chip transition and the through-substrate via transition with a height of 800 mum exhibited return losses better than 25 dB and 20 dB, respectively, with low transmission losses up to 50 GHz. Furthermore, the wideband board-level BGA transition with a standoff height of 500 showed low insertion loss (< 0.5 dB) over a wide frequency range, from direct current (dc) up to 32.5 GHz.

[1]  S. Sitaraman,et al.  Thermo-mechanical failure comparison and evaluation of CCGA and CBGA electronic packages , 2003, 53rd Electronic Components and Technology Conference, 2003. Proceedings..

[2]  B. Nauwelaers,et al.  Accurate transmission line characterization on high and low-resistivity substrates , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[3]  H. Jantunen,et al.  High performance vertical interconnections for millimeter-wave multichip modules , 2005, 2005 European Microwave Conference.

[4]  M. Tokumitsu,et al.  Novel flip-chip bonding technology for W-band interconnections using alternate lead-free solder bumps , 2002, IEEE Microwave and Wireless Components Letters.

[5]  Jussi Putaala,et al.  Reliability and RF performance of BGA solder joints with plastic-core solder balls in LTCC/PWB assemblies , 2006, Microelectron. Reliab..

[6]  H. Shigesawa,et al.  New interesting leakage behavior on coplanar waveguides of finite and infinite widths , 1991, 1991 IEEE MTT-S International Microwave Symposium Digest.

[7]  Shirish L. Patil,et al.  High reliability LTCC BGA for telecom applications , 2000, Twenty Sixth IEEE/CPMT International Electronics Manufacturing Technology Symposium (Cat. No.00CH37146).

[8]  R. Marks A multiline method of network analyzer calibration , 1991 .

[9]  M. S. Hyslop,et al.  BALL GRID ARRAYS : A DC TO 31.5 GHZ LOW COST PACKAGING SOLUTION FOR MICROWAVE AND MM-WAVE MMICS , 1998 .

[10]  Jong-Gwan Yook,et al.  Microtechnology in the development of three-dimensional circuits , 1998 .

[11]  B. Nauwelaers,et al.  Accurate transmission line characterisation on high and low-resistivity substrates , 2001 .

[12]  A. Panther,et al.  Vertical transitions in low temperature co-fired ceramics for LMDS applications , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[13]  Ching-Kuang C. Tzuang,et al.  Mode-coupling-avoidance of shielded conductor-backed coplanar waveguide (CBCPW) using dielectric lines compensation , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[14]  K. Chang,et al.  A discussion on the coupling effects in conductor-backed coplanar waveguide MICs with lateral sidewalls , 1993, 1993 IEEE MTT-S International Microwave Symposium Digest.

[15]  Hai-Young Lee,et al.  Suppression of the CPW leakage in common millimeter-wave flip-chip structures , 1998 .

[16]  A. Tessmann,et al.  Avoiding cross talk and feed back effects in packaging coplanar millimeter-wave circuits , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[17]  Linda P. B. Katehi,et al.  Isolation in three-dimensional integrated circuits , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[18]  Chul Soon Park,et al.  Monolithic LTCC SiP transmitter for 60GHz wireless communication terminals , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[19]  C. Lee,et al.  Novel transition between different configurations of planar transmission lines , 2002, IEEE Microwave and Wireless Components Letters.

[21]  Z. Zhong,et al.  Board level solder joint reliability modeling and testing of TFBGA packages for telecommunication applications , 2003, Microelectron. Reliab..

[22]  R.L. Eisenhart A Better Microstrip Connector , 1978, 1978 IEEE-MTT-S International Microwave Symposium Digest.

[23]  E. R. Pillai,et al.  An advanced packaging solution for OC-768, 40Gb/s utilizing ibm standard alumina MLC technology , 2003, 53rd Electronic Components and Technology Conference, 2003. Proceedings..

[24]  P. Thompson,et al.  Stencil printing process development for flip chip interconnect , 2000 .

[25]  Ruey-Beei Wu,et al.  Modeling and design for electrical performance of wideband flip-chip transition , 2003 .

[26]  T. Itoh,et al.  Leakage suppression in stripline circuits using a 2-D photonic bandgap lattice , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[27]  T. Jaakola,et al.  High performances of shielded LTCC vertical transitions from DC up to 50 GHz , 2004, 34th European Microwave Conference, 2004..

[28]  R. Simons Coplanar waveguide circuits, components, and systems , 2001 .

[29]  E. M. Godshalk Generation and observation of surface waves on dielectric slabs and coplanar structures , 1993, 1993 IEEE MTT-S International Microwave Symposium Digest.

[30]  Henry Jasik,et al.  Antenna engineering handbook , 1961 .

[31]  D. Staiculescu,et al.  Wideband scalable electrical model for microwave/millimeter wave flip chip interconnects , 2001 .

[32]  W. Heinrich,et al.  Millimeterwave characteristics of flip-chip interconnects for multi-chip modules , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[33]  A. Tessmann,et al.  A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects , 2004, IEEE Microwave and Wireless Components Letters.

[34]  W. H. Haydl,et al.  On the use of vias in conductor-backed coplanar circuits , 2002 .

[35]  W. Heinrich,et al.  Millimeter-wave characteristics of flip-chip interconnects for multichip modules , 1998, IMS 1998.

[36]  Ke Wu,et al.  Rigorous analysis of the characteristic impedance in conductor-backed miniature coplanar waveguides considering multiple layers of lossy and finite thickness metal , 1992, 1992 IEEE Microwave Symposium Digest MTT-S.

[37]  K. Maruhashi,et al.  RF performance of a 77 GHz monolithic CPW amplifier with flip-chip interconnections , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[38]  G. Ponchak,et al.  Excitation of coupled slotline mode in finite-ground CPW with unequal ground-plane widths , 2005, IEEE Transactions on Microwave Theory and Techniques.

[39]  W. Heinrich,et al.  The flip-chip approach for millimeter wave packaging , 2005, IEEE Microwave Magazine.

[40]  Joy Laskar,et al.  Development of a 36 GHz millimeter-wave BGA package , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[41]  Dheena Moongilan Grounding optimization techniques for controlling radiation and crosstalk in mixed signal PCBs , 1998, 1998 IEEE EMC Symposium. International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.98CH36253).

[42]  Ke Wu,et al.  Characterization of finite-ground CPW reactive series-connected elements for innovative design of uniplanar M(H)MICs , 2002 .

[43]  Arne F. Jacob,et al.  Novel LTCC/BGA Modules for Highly Integrated , 2003 .

[44]  G. Dambrine,et al.  On-wafer measurement at millimeter wave frequencies , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[45]  C. Makihara,et al.  50 GHz broadband SMT package for microwave applications , 2001, 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220).

[46]  W. Heinrich,et al.  Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz , 2001 .

[47]  R. Majidi-Ahy,et al.  Propagation modes and dispersion characteristics of coplanar waveguides , 1990 .