A new multiscale finite element method for high-contrast elliptic interface problems

We introduce a new multiscale finite element method which is able to accurately capture solutions of elliptic interface problems with high contrast coefficients by using only coarse quasiuniform meshes, and without resolving the interfaces. A typical application would be the modelling of flow in a porous medium containing a number of inclusions of low (or high) permeability embedded in a matrix of high (respectively low) permeability. Our method is H^1- conforming, with degrees of freedom at the nodes of a triangular mesh and requiring the solution of subgrid problems for the basis functions on elements which straddle the coefficient interface but which use standard linear approximation otherwise. A key point is the introduction of novel coefficientdependent boundary conditions for the subgrid problems. Under moderate assumptions, we prove that our methods have (optimal) convergence rate of O(h) in the energy norm and O(h^2) in the L_2 norm where h is the (coarse) mesh diameter and the hidden constants in these estimates are independent of the “contrast” (i.e. ratio of largest to smallest value) of the PDE coefficient. For standard elements the best estimate in the energy norm would be O(h^(1/2−e)) with a hidden constant which in general depends on the contrast. The new interior boundary conditions depend not only on the contrast of the coefficients, but also on the angles of intersection of the interface with the element edges.

[1]  J. Melenk,et al.  Optimal Convergence of Higher Order Finite Element Methods for Elliptic Interface Problems , 2009 .

[2]  Christian Wieners,et al.  Optimal a priori estimates for interface problems , 2003, Numerische Mathematik.

[3]  C. M. Elliott,et al.  Fitted and Unfitted Finite-Element Methods for Elliptic Equations with Smooth Interfaces , 1987 .

[4]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[5]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[6]  J. Seo,et al.  Numerical identification of discontinuous conductivity coefficients , 1997 .

[7]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[8]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[9]  Martin Vohralík Guaranteed and Fully Robust a posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients , 2011, J. Sci. Comput..

[10]  James P. Keener,et al.  An Immersed Interface Method for Solving Anisotropic Elliptic Boundary Value Problems in Three Dimensions , 2003, SIAM J. Sci. Comput..

[11]  Zhilin Li,et al.  The Immersed Interface/Multigrid Methods for Interface Problems , 2002, SIAM J. Sci. Comput..

[12]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[13]  M. Dryja On Discontinuous Galerkin Methods for Elliptic Problems with Discontinuous Coefficients , 2003 .

[14]  J. Zou,et al.  Some New A Priori Estimates for Second-Order Elliptic and Parabolic Interface Problems , 2002 .

[15]  Zhilin Li A Fast Iterative Algorithm for Elliptic Interface Problems , 1998 .

[16]  I. Graham,et al.  Robust domain decomposition algorithms for multiscale PDEs , 2007 .

[17]  J. Zou,et al.  Finite Element Methods and Their Convergencefor Elliptic and Parabolic Interface , 1996 .

[18]  Boo Cheong Khoo,et al.  Ghost fluid method for strong shock impacting on material interface , 2003 .

[19]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[20]  Jens Markus Melenk,et al.  Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .

[21]  H. Owhadi,et al.  Metric‐based upscaling , 2007 .

[22]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[23]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[24]  Jin Keun Seo,et al.  The layer potential technique for the inverse conductivity problem , 1996 .

[25]  I-Liang Chern,et al.  A coupling interface method for elliptic interface problems , 2007, J. Comput. Phys..

[26]  Mark Ainsworth,et al.  Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..

[27]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[28]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[29]  Shan Zhao,et al.  High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources , 2006, J. Comput. Phys..

[30]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[31]  Stanley Osher,et al.  A Hybrid Method for Moving Interface Problems with Application to the Hele-Shaw Flow , 1997 .

[32]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[33]  Boo Cheong Khoo,et al.  The ghost fluid method for compressible gas-water simulation , 2005 .

[34]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[35]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs , 2008, Numerische Mathematik.

[36]  Kazufumi Ito,et al.  Maximum Principle Preserving Schemes for Interface Problems with Discontinuous Coefficients , 2001, SIAM J. Sci. Comput..

[37]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[38]  R. Fedkiw,et al.  A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains , 2000 .

[39]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[40]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[41]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[42]  Xu-Dong Liu,et al.  Convergence of the ghost fluid method for elliptic equations with interfaces , 2003, Math. Comput..

[43]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[44]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[45]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[46]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[47]  H. Owhadi,et al.  Metric based up-scaling , 2005, math/0505223.

[48]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[49]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .