The materials chemistry of porphyrins and metalloporphyrins

Porphyrins and metalloporphyrins provide an extremely versatile nanometer-sized building block for the control of materials properties. Films, solids and microporous solids have been explored as field-responsive materials (i.e. interactions with applied electric, magnetic or electromagnetic fields) and as ‘chemo-responsive’ materials (i.e. interactions with other chemical species as sensors or for selective binding or catalysis).

[1]  M. Crossley,et al.  An approach to porphyrin-based molecular wires: synthesis of a bis(porphyrin)tetraone and its conversion to a linearly conjugated tetrakisporphyrin system , 1991 .

[2]  A. Bard,et al.  Reversible Charge Trapping/Detrapping in a Photoconductive Insulator of Liquid Crystal Zinc Porphyrin , 1997 .

[3]  P. Das,et al.  Metalloporphyrins for Quadratic Nonlinear Optics , 1996 .

[4]  I. Okura,et al.  Optical Sensor for Oxygen Using a Porphyrin-doped Sol-Gel Glass , 1997 .

[5]  A. Bard,et al.  Effect of Structural Order on the Dark Current and Photocurrent in Zinc Octakis(.beta.-decoxyethyl)porphyrin Thin-Layer Cells , 1995 .

[6]  W. Little,et al.  Synthetic, electrochemical, optical, and conductivity studies of coordination polymers of iron, ruthenium, and osmium octaethylporphyrin , 1987 .

[7]  A. Lepre,et al.  Controlling the Response Characteristics of Luminescent Porphyrin Plastic Film Sensors for Oxygen , 1997 .

[8]  I. Goldberg,et al.  Supramolecular architectures of functionalized tetraphenylmetalloporphyrins in crystalline solids. Studies of the 4-methoxyphenyl, 4-hydroxyphenyl and 4-chlorophenyl derivatives , 1994 .

[9]  T. Malinski,et al.  Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor , 1992, Nature.

[10]  Roger Guilard,et al.  The porphyrin handbook , 2002 .

[11]  Y. Hsiou,et al.  Porphyrin sponges: conservative of host structure in over 200 porphyrin-based lattice clathrates , 1993 .

[12]  M. Wasielewski,et al.  Optical Control of Photogenerated Ion Pair Lifetimes: An Approach to a Molecular Switch , 1996, Science.

[13]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[14]  James P. Collman,et al.  Surface Acoustic Wave Oxygen Sensor , 1994 .

[15]  F. Montanari,et al.  Metalloporphyrins catalyzed oxidations , 1994 .

[16]  I. Goldberg,et al.  Porphyrin sponges: structural systematics of the host lattice , 1991 .

[17]  Scott R. Wilson,et al.  Hydrogen-Bonded Porphyrinic Solids: Supramolecular Networks of Octahydroxy Porphyrins , 1997 .

[18]  A. Osuka,et al.  meso, meso‐Linked Porphyrin Arrays , 1997 .

[19]  W. Little,et al.  Conductive polymers derived from iron, ruthenium, and osmium metalloporphyrins: The shish-kebab approach. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Meunier General Overview on Oxidations Catalyzed by Metalloporphyrins , 1994 .

[21]  Saeed I. Khan,et al.  Tetraarylporphyrin sponges. Composition, structural systematics, and applications of a large class of programmable lattice clathrates , 1990 .

[22]  B. Abrahams,et al.  Assembly of porphyrin building blocks into network structures with large channels , 1994, Nature.

[23]  Zhenan Bao,et al.  New Metalloporphyrin Containing Polymers from the Heck Coupling Reaction , 1994 .

[24]  Zhenan Bao,et al.  LARGE PHOTOREFRACTIVITY IN AN EXCEPTIONALLY THERMOSTABLE MULTIFUNCTIONAL POLYIMIDE , 1994 .

[25]  Thomas M. Cooper,et al.  Investigation of reverse-saturable absorption in brominated porphyrins , 1998 .

[26]  Jonathan S. Lindsey,et al.  A molecular photonic wire , 1994 .

[27]  Delyle Eastwood,et al.  Porphyrins: XVIII. Luminescence of (Co), (Ni), Pd, Pt complexes☆ , 1970 .

[28]  K. Suslick,et al.  Discotic Liquid Crystals from a Bis-Pocketed Porphyrin , 1998 .

[29]  John D. Spikes,et al.  Phthalocyanines: Properties and Applications , 1991 .

[30]  Paul A. Fleitz,et al.  Nonlinear Optics of Organic Molecules and Polymers , 1997 .

[31]  J. I. Brauman,et al.  Synthesis, characterization, and x-ray structure of the ruthenium picnic-basket porphyrins , 1988 .

[32]  K. Suslick,et al.  Push-pull Porphyrins as Nonlinear Optical Materials , 1992 .

[33]  Hailian Li,et al.  Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids† , 1998 .

[34]  K. Suslick,et al.  One-dimensional coordination polymers: applications to material science , 1993 .

[35]  W. Blau,et al.  Picosecond optical phase conjugation using conjugated organic molecules , 1988 .

[36]  K. Suslick,et al.  Langmuir-Blodgett Films of Amphiphilic Push-Pull Porphyrins , 1994 .

[37]  C. M. Drain,et al.  Porphyrin Tessellation by Design: Metal-Mediated Self-Assembly of Large Arrays and Tapes. , 1998, Angewandte Chemie.

[38]  B. Abrahams,et al.  A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks , 1991 .

[39]  Scott R. Wilson,et al.  Supramolecular Networks of Octahydroxy Porphyrins , 1998 .

[40]  Joseph T. Hupp,et al.  Electronic Stark Effect Studies of a Porphyrin-Based Push−Pull Chromophore Displaying a Large First Hyperpolarizability: State-Specific Contributions to β , 1998 .