A posteriori error estimation and error control for finite element approximations of the time-dependent Navier-Stokes equations

Abstract We present an approach to estimate numerical errors in finite element approximations of the time-dependent Navier–Stokes equations along with a strategy to control these errors. The error estimators and the error control procedure are based on the residuals of the Navier–Stokes equations, which are shown to be comparable to error components in the velocity variable. The present methodology applies to the estimation of numerical errors due to the spatial discretization only. Its performance is demonstrated for two-dimensional channel flows past a cylinder in the periodic regime.

[1]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[2]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[3]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[4]  O. C. Zienkiewicz,et al.  Error estimation and adaptivity in Navier-Stokes incompressible flows , 1990 .

[5]  Leszek Demkowicz,et al.  Adaptive methods for problems in solid and fluid mechanics , 1986 .

[6]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[7]  J. Oden,et al.  An a posteriori error estimate for finite element approximations of the Navier-Stokes equations , 1994 .

[8]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[9]  Randolph E. Bank,et al.  A posteriori error estimates for the Stokes problem , 1991 .

[10]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[11]  Serge Prudhomme,et al.  A technique for a posteriori error estimation of h-p approximations of the Stokes equations , 1998 .

[12]  J. G. Heywood Open problems in the theory of the Navier-Stokes equations for viscous incompressible flow , 1990 .

[13]  Tayfun E. Tezduyar,et al.  Parallel fluid dynamics computations in aerospace applications , 1995 .

[14]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[15]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[16]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[17]  J. Tinsley Oden,et al.  A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .

[18]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[19]  J. Tinsley Oden,et al.  Advances in adaptive computational methods in mechanics , 1998 .

[20]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[21]  Serge Prudhomme,et al.  A posteriori error estimation of steady-state finite element solutions of the Navier—Stokes equations by a subdomain residual method , 1998 .

[22]  Roger Temam,et al.  Navier–Stokes Equations and Nonlinear Functional Analysis: Second Edition , 1995 .

[23]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[24]  A. J. Baker,et al.  Numerical simulations of laminar flow over a 3D backward‐facing step , 1997 .

[25]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.