The field swelling and mirror modes: connection of the two instabilities

A theory of zero frequency and low growth rate llower than the ion cyclotron frequencyr modes in homogeneous plasmas with temperature anisotropies is presented. These modes are considered to propagate at large angles to the ambient magnetic field and are electromagnetic in nature. From the analysis of a general dispersion relation, with arbitrary electron to ion temperature ratio TesTi, it is found that the mirror lTe→0r and field swelling lTi→0r modes are smoothly connected. Thus an anisotropic homogeneous plasma will always relax via one of these instabilities las well as through the fieldhaligned ion cyclotron instabilitiesr for any value of TesTi, provided electron andsor ion temperature anisotropies exceed the required thresholds ldetermined in the Te e 0 and Ti e 0 limitsr. This broadens the applicability of this mechanism for producing lowhfrequency waves in space plasmas, since a cold species is no longer essential for plasmas with little or no spatial ldensity andsor temperaturer gradients.

[1]  Subrahmanyan Chandrasekhar,et al.  The stability of the pinch , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  Burton D. Fried,et al.  The Plasma Dispersion Function , 1961 .

[3]  R. Z. Sagdeev,et al.  Cooperative Phenomena and Shock Waves in Collisionless Plasmas , 1966 .

[4]  A. Barnes Collisionless Damping of Hydromagnetic Waves , 1966 .

[5]  G. Siscoe,et al.  Magnetic fluctuations in the magnetosheath - Mariner 4. , 1967 .

[6]  D. Fairfield The ordered magnetic field of the magnetosheath , 1967 .

[7]  A. Hasegawa Drift Mirror Instability in the Magnetosphere , 1969 .

[8]  A. Wolfe,et al.  Large‐amplitude hydromagnetic waves in the inner magnetosheath , 1970 .

[9]  N. Ness,et al.  Magnetic field fluctuations in the earth's magnetosheath , 1970 .

[10]  J. Horng,et al.  Physical structure of hydromagnetic disturbances in the inner magnetosheath , 1971 .

[11]  R. McPherron,et al.  Statistical characteristics of storm‐associated Pc 5 micropulsations observed at the synchronous equatorial orbit , 1972 .

[12]  L. Lanzerotti,et al.  Modes of magnetohydrodynamic waves in the magnetosphere , 1974 .

[13]  L. J. Cahill,et al.  Explorer 45 (S³‐A) observations of the magnetosphere and magnetopause during the August 4–6, 1972, magnetic storm period , 1975 .

[14]  S. Peter Gary,et al.  Proton temperature anisotropy instabilities in the solar wind , 1976 .

[15]  Edward J. Smith,et al.  Magnetosheath lion roars , 1976 .

[16]  G. Siscoe,et al.  A mechanism for pressure anisotropy and mirror instability in the dayside magnetosheath , 1977 .

[17]  R. McPherron,et al.  Stormtime Pc 5 magnetic pulsations observed at synchronous orbit and their correlation with the partial ring current , 1978 .

[18]  R. McPherron,et al.  Geomagnetic pulsations observed simultaneously on three geostationary satellites , 1978 .

[19]  G. Parks,et al.  The coupling of Alfvén and compressional waves , 1978 .

[20]  M. Kivelson,et al.  The latitudinal structure of Pc 5 waves in space: Magnetic and electric field observations , 1979 .

[21]  G. S. Stiles,et al.  Observations of plasma depletion in the magnetosheath at the dayside magnetopause , 1979 .

[22]  S. Migliuolo,et al.  Alfven waves and drift compressional modes in multispecies plasmas , 1980 .

[23]  C. Russell,et al.  An analytic treatment of the structure of the bow shock and magnetosheath , 1981 .

[24]  E. Amata,et al.  Observations of quasi‐periodic flux variations of energetic ions and electrons associated with Pc 5 geomagnetic pulsations , 1981 .

[25]  B. Tsurutani,et al.  The generation mechanism for magnetosheath lion roars , 1981, Nature.

[26]  B. Coppi,et al.  Field-swelling instability in anisotropic plasmas , 1982 .

[27]  R. Greenwald,et al.  STARE and GEOS 2 observations of a storm time Pc 5 ULF pulsation , 1982 .

[28]  T. Eastman,et al.  Plasma waves near the magnetopause , 1982 .

[29]  D. Baker,et al.  Lion roars and nonoscillatory drift mirror waves in the magnetosheath , 1982 .

[30]  V. L. Patel,et al.  The coupling of shear Alfvén and compressional waves in high‐β magnetospheric plasma , 1983 .

[31]  R. McNutt,et al.  Low-energy plasma ion observations in Saturn's magnetosphere , 1983 .

[32]  S. Migliuolo Drift waves in high‐β two‐temperature plasmas , 1984 .

[33]  B. Coppi,et al.  Theory of field-swelling instability in anisotropic plasmas , 1984 .

[34]  B. Tsurutani,et al.  Drift mirror Mode waves in the distant (X ≃ 200 Re) magnetosheath , 1984 .

[35]  V. L. Patel,et al.  Drift wave instabilities in a high β multispecies plasma , 1984 .

[36]  C. Meng,et al.  Observations of a quiet-time Pc5 wave in the outer magnetosphere , 1984 .

[37]  C. Lin,et al.  Azimuthal propagation of storm time Pc 5 waves observed simultaneously by geostationary satellites GOES 2 and GOES 3 , 1985 .

[38]  S. Gary,et al.  Electromagnetic electron temperature anisotropy instabilities , 1985 .

[39]  Daniel W. Swift,et al.  Numerical simulation of nonoscillatory mirror waves at the Earth's magnetosheath , 1986 .