Euclidean position estimation of static features using a moving camera with known velocities

The estimation of 3D Euclidean coordinates of features from 2D images continues to be a problem of significant interest. In this paper we develop a 3D Euclidean position estimation strategy for a static object using a single moving camera whose motion is known. The Euclidean depth estimator which is developed has a very simple mathematical structure and is easy to implement. Numerical simulations are presented to illustrate the performance of the algorithm and an extension for a paracatadioptric system is briefly discussed.

[1]  Simon Lacroix,et al.  High resolution terrain mapping using low attitude aerial stereo imagery , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  John Oliensis,et al.  A Critique of Structure-from-Motion Algorithms , 2000, Comput. Vis. Image Underst..

[3]  Takeo Kanade,et al.  An autonomous blimp for a surveillance system , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[4]  T. Kanade,et al.  Real-time and 3D vision for autonomous small and micro air vehicles , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[5]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[6]  Isaac Kaminer,et al.  Vision-Based Tracking and Motion Estimation for Moving Targets Using Small UAVs , 2006 .

[7]  Shree K. Nayar,et al.  A Theory of Single-Viewpoint Catadioptric Image Formation , 1999, International Journal of Computer Vision.

[8]  François Chaumette,et al.  2 1/2 D Visual Servoing with Respect to Unknown Objects Through a New Estimation Scheme of Camera Displacement , 2000, International Journal of Computer Vision.

[9]  D. Dawson,et al.  Range identification for perspective vision systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[10]  Salah Sukkarieh,et al.  Airborne simultaneous localisation and map building , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[11]  D.M. Dawson,et al.  A Lyapunov-Based Method for Estimation of Euclidean Position of Static Features Using a Single Camera , 2007, 2007 American Control Conference.

[12]  Guoqiang Hu,et al.  Lyapunov-Based Range Identification For A Paracatadioptric System , 2006, CDC.

[13]  Kostas Daniilidis,et al.  Paracatadioptric Camera Calibration , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Samia Boukir,et al.  Structure From Controlled Motion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Xiaoming Hu,et al.  Active state estimation of nonlinear systems , 2004, Autom..

[16]  Olivier Faugeras,et al.  Three-Dimensional Computer Vision , 1993 .

[17]  Warren E. Dixon,et al.  Identification of a moving object's velocity with a fixed camera , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[18]  Alessandro Astolfi,et al.  A new solution to the problem of range identification in perspective vision systems , 2005, IEEE Transactions on Automatic Control.

[19]  Jeffrey K. Uhlmann,et al.  A counter example to the theory of simultaneous localization and map building , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[20]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Stefano Soatto,et al.  Structure from Motion Causally Integrated Over Time , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  B. Ghosh,et al.  Visually guided ranging from observations of points, lines and curves via an identifier based nonlinear observer , 1995 .

[23]  Joshua D. Redding,et al.  Vision-based target localization from a fixed-wing miniature air vehicle , 2006, 2006 American Control Conference.

[24]  Kenichi Arakawa,et al.  Motion and shape recovery based on iterative stabilization for modest deviation from planar motion , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Xinkai Chen,et al.  State observer for a class of nonlinear systems and its application to machine vision , 2004, IEEE Transactions on Automatic Control.

[26]  H. Kannan,et al.  Velocity and structure estimation of a moving object using a moving monocular camera , 2006, 2006 American Control Conference.

[27]  Warren E. Dixon,et al.  Adaptive homography-based visual servo tracking for a fixed camera configuration with a camera-in-hand extension , 2005, IEEE Transactions on Control Systems Technology.

[28]  MalisEzio,et al.  2 1/2 D Visual Servoing with Respect to Unknown Objects Through a New Estimation Scheme of Camera Displacement , 2000 .