Performance of MIMO channel estimation with a physical model

Channel estimation is challenging in multi-antenna communication systems, because of the large number of parameters to estimate. One way of facilitating this task is to use a physical model describing the multiple paths constituting the channel, in the hope of reducing the number of unknowns in the problem. The achievable performance of estimation using this kind of physical model is studied theoretically. It is found that adjusting the number of estimated paths leads to a bias-variance tradeoff which is characterized. Moreover, computing the Fisher information matrix of the model allows to identify orthogonal parameters, ultimately leading to fast and asymptotically optimal algorithms as a byproduct.

[1]  Lars Thiele,et al.  QuaDRiGa: A 3-D Multi-Cell Channel Model With Time Evolution for Enabling Virtual Field Trials , 2014, IEEE Transactions on Antennas and Propagation.

[2]  Robert D. Nowak,et al.  Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels , 2010, Proceedings of the IEEE.

[3]  Theodore S. Rappaport,et al.  A novel millimeter-wave channel simulator and applications for 5G wireless communications , 2017, 2017 IEEE International Conference on Communications (ICC).

[4]  Fa-Long Luo,et al.  Millimeter-Wave MIMO Transceivers: Theory, Design and Implementation , 2016 .

[5]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[6]  Robert W. Heath,et al.  Spatially Sparse Precoding in Millimeter Wave MIMO Systems , 2013, IEEE Transactions on Wireless Communications.

[7]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[8]  Robert W. Heath,et al.  An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems , 2015, IEEE Journal of Selected Topics in Signal Processing.

[9]  Alex B. Gershman,et al.  Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals , 2006, IEEE Transactions on Signal Processing.

[10]  Emil Björnson,et al.  Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency , 2018, Found. Trends Signal Process..

[11]  Erik G. Larsson,et al.  Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays , 2012, IEEE Signal Process. Mag..

[12]  Adriaan van den Bos,et al.  A Cramer-Rao lower bound for complex parameters , 1994, IEEE Trans. Signal Process..

[13]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[14]  David S. Slepian,et al.  Estimation of signal parameters in the presence of noise , 1954, Trans. IRE Prof. Group Inf. Theory.

[15]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[16]  Wen Xu,et al.  Downlink Training Sequence Design for FDD Multiuser Massive MIMO Systems , 2017, IEEE Transactions on Signal Processing.

[17]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[18]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[19]  Akbar M. Sayeed,et al.  Deconstructing multiantenna fading channels , 2002, IEEE Trans. Signal Process..

[20]  Stéphane Paquelet,et al.  Bias-variance tradeoff in MIMO channel estimation , 2018, ArXiv.

[21]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[22]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[23]  Stéphane Paquelet,et al.  Parametric Channel Estimation for Massive MIMO , 2018, 2018 IEEE Statistical Signal Processing Workshop (SSP).