Some reductive Strategies in Cognitive Neurobiology

A powerful conception of representation and computation — drawn from recent work in the neurosciences — is here outlined. Its virtues are explained and explored in three important areas: sensory representation, sensorimotor coordination, and microphysical implementation. It constitutes a highly general conception of cognitive activity that has significant reductive potential.

[1]  B E Stein,et al.  Development of the superior colliculus. , 1984, Annual review of neuroscience.

[2]  P. Churchland Reduction, Qualia, and the Direct Introspection of Brain States , 1985 .

[3]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[4]  Bradley G. Klein,et al.  Dendrites of deep layer, somatosensory superior collicular neurons extend into the superficial laminae , 1984, Brain Research.

[5]  D. Dennett Brain Writing and Mind Reading , 1975 .

[6]  J. Travers,et al.  Coding of taste stimuli by hamster brain stem neurons. , 1983, Journal of neurophysiology.

[7]  R. Llinás The cortex of the cerebellum. , 1975, Scientific American.

[8]  P. Churchland Scientific realism and the plasticity of mind , 1980 .

[9]  L E Mays,et al.  Saccades are spatially, not retinocentrically, coded. , 1980, Science.

[10]  A. Pellionisz,et al.  Tensor network theory of the metaorganization of functional geometries in the central nervous system , 1985, Neuroscience.

[11]  J. Sprague,et al.  Anatomical organization of pretectal nuclei and tectal laminae in the cat , 1974, The Journal of comparative neurology.

[12]  Paul M. Churchland,et al.  Matter and sense , 1982 .

[13]  S. Petersen,et al.  Visual Topography and Function , 1981 .

[14]  B. Gordon,et al.  Receptive fields in deep layers of cat superior colliculus. , 1973, Journal of neurophysiology.

[15]  M A Meredith,et al.  Descending efferents from the superior colliculus relay integrated multisensory information. , 1985, Science.

[16]  J. K. Harting,et al.  Connectional organization of the superior colliculus , 1984, Trends in Neurosciences.

[17]  D. Robinson,et al.  Visual System: Superior Colliculus , 1978 .

[18]  S. Zeki Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours , 1983, Neuroscience.

[19]  T. Nagel Mortal Questions: What is it like to be a bat? , 2012 .

[20]  A. Pellionisz,et al.  Brain modeling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordination , 1979, Neuroscience.

[21]  Daniel Holender,et al.  Semantic activation without conscious identification in dichotic listening, parafoveal vision, and visual masking: A survey and appraisal , 1986, Behavioral and Brain Sciences.

[22]  J T McIlwain,et al.  Visual receptive fields and their images in superior colliculus of the cat. , 1975, Journal of neurophysiology.

[23]  Dana H. Ballard,et al.  Cortical connections and parallel processing: Structure and function , 1986, Behavioral and Brain Sciences.

[24]  Paul M. Churchland,et al.  Cognitive neurobiology: a computational hypothesis for laminar cortex , 1986 .

[25]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[26]  Masakazu Konishi Centrally synthesized maps of sensory space , 1986, Trends in Neurosciences.

[27]  P. Schiller,et al.  Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. , 1972, Journal of neurophysiology.

[28]  A. Pellionisz,et al.  Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor , 1982, Neuroscience.

[29]  S. Amari,et al.  Sensori-motor transformations in the brain (with a critique of the tensor theory of cerebellum). , 1985, Journal of theoretical biology.

[30]  M. Cynader,et al.  Receptive-field organization of monkey superior colliculus. , 1972, Journal of neurophysiology.