Thermo-mechanical contact problems on non-matching meshes

Non-matching meshes and domain decomposition techniques based on Lagrange multipliers provide a flexible and efficient discretization technique for variational inequalities with interface constraints. Although mortar methods are well analyzed for variational inequalities, its application to dynamic thermo-mechanical contact problems with friction is still a field of active research. In this work, we extend the mortar approach for dynamic contact problems with Coulomb friction to the thermo-mechanical case. We focus on the discretization and on algorithmic aspects of dynamic effects such as frictional heating and thermal softening at the contact interface. More precisely, we generalize the mortar concept of dual Lagrange multipliers to non-linear Robin-type interface conditions and apply local static condensation to eliminate the heat flux. Numerical examples in the two-dimensional and the three-dimensional setting illustrate the flexibility of the discretization on non-matching meshes.

[1]  L. Johansson,et al.  Thermoelastic frictional contact problems: Modelling, finite element approximation and numerical realization , 1993 .

[2]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[3]  Christian Rohde,et al.  Global existence and uniqueness of solutions for a viscoelastic two-phase model with nonlocal capillarity , 2008 .

[4]  Peter Wriggers,et al.  Mortar based frictional contact formulation for higher order interpolations using the moving friction cone , 2006 .

[5]  Barbara I. Wohlmuth,et al.  A posteriori error estimator and error control for contact problems , 2009, Math. Comput..

[6]  Barbara Wohlmuth,et al.  A primal–dual active set strategy for non-linear multibody contact problems , 2005 .

[7]  Peter Wriggers,et al.  Contact constraints within coupled thermomechanical analysis—A finite element model , 1994 .

[8]  T. Mel'nyk Homogenization of a boundary‐value problem with a nonlinear boundary condition in a thick junction of type 3:2:1 , 2008 .

[9]  Wolfgang L. Wendland,et al.  Boundary integral equations for a three‐dimensional Brinkman flow problem , 2009 .

[10]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[11]  Barbara Wohlmuth,et al.  An overlapping domain decomposition method for the simulation of elastoplastic incremental forming processes , 2009 .

[12]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[13]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[14]  Tod A. Laursen,et al.  A finite element formulation of thermomechanical rate‐dependent frictional sliding , 1997 .

[15]  Barbara Wohlmuth,et al.  A stable energy‐conserving approach for frictional contact problems based on quadrature formulas , 2008 .

[16]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[17]  Barbara Wohlmuth,et al.  Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D , 2007 .

[18]  C. Rohde,et al.  TIME-ASYMPTOTIC BEHAVIOUR OF WEAK SOLUTIONS FOR A VISCOELASTIC TWO-PHASE MODEL WITH NONLOCAL CAPILLARITY , 2007 .

[19]  Wolfgang Fichtner,et al.  Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors , 2000 .

[20]  Christina Surulescu,et al.  On a Time-Dependent Fluid-Solid Coupling in 3D with Nonstandard Boundary Conditions , 2010 .

[21]  W. Yong,et al.  DISSIPATIVE ENTROPY AND GLOBAL SMOOTH SOLUTIONS IN RADIATION HYDRODYNAMICS AND MAGNETOHYDRODYNAMICS , 2008 .

[22]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[23]  Tod A. Laursen,et al.  Two dimensional mortar contact methods for large deformation frictional sliding , 2005 .

[24]  M. De Handbuch der Physik , 1957 .

[25]  Christian Rohde,et al.  Local Discontinuous-Galerkin Schemes for Model Problems in Phase Transition Theory , 2008 .

[26]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[27]  Patrick Laborde,et al.  Comparison of two approaches for the discretization of elastodynamic contact problems , 2006 .

[28]  Bernie Tsang,et al.  Variational methods for boundary value problems , 2000, Adv. Decis. Sci..

[29]  Peter Betsch,et al.  A comparison of computational methods for large deformation contact problems of flexible bodies , 2006 .

[30]  Barbara I. Wohlmuth,et al.  A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..

[31]  Kai Willner,et al.  Kontinuums- und Kontaktmechanik , 2003 .