Several extremal problems on graphs involving the circumference, girth, and hyperbolicity constant

Abstract To compute the hyperbolicity constant is an almost intractable problem, thus it is natural to try to bound it in terms of some parameters of the graph. Let G ( g , c , n ) be the set of graphs G with girth g ( G ) = g , circumference c ( G ) = c , and n vertices; and let H ( g , c , m ) be the set of graphs with girth g , circumference c , and m edges. In this work, we study the four following extremal problems on graphs: A ( g , c , n ) = min { δ ( G ) | G ∈ G ( g , c , n ) } , B ( g , c , n ) = max { δ ( G ) | G ∈ G ( g , c , n ) } , α ( g , c , m ) = min { δ ( G ) | ∈ H ( g , c , m ) } and β ( g , c , m ) = max { δ ( G ) | G ∈ H ( g , c , m ) } . In particular, we obtain bounds for A ( g , c , n ) and α ( g , c , m ) , and we compute the precise value of B ( g , c , n ) and β ( g , c , m ) for all values of g , c , n and m .

[1]  Yaokun Wu,et al.  Hyperbolicity and Chordality of a Graph , 2011, Electron. J. Comb..

[2]  Victor Chepoi,et al.  Cop and Robber Game and Hyperbolicity , 2013, SIAM J. Discret. Math..

[3]  Panos Papasoglu An algorithm detecting hyperbolicity , 1994, Geometric and Computational Perspectives on Infinite Groups.

[4]  Yilun Shang,et al.  Lack of Gromov-hyperbolicity in small-world networks , 2012 .

[5]  Hsueh-I Lu,et al.  Computing the Girth of a Planar Graph in Linear Time , 2011, SIAM J. Comput..

[6]  José M. Rodríguez,et al.  Gromov hyperbolic cubic graphs , 2012 .

[7]  U. Lang Extendability of Large-Scale Lipschitz Maps , 1999 .

[8]  Counting subgraphs in hyperbolic graphs with symmetry , 2013, 1311.4450.

[9]  Wei Chen,et al.  On the Hyperbolicity of Small-World and Treelike Random Graphs , 2013, Internet Math..

[10]  E. Tourís Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces , 2011 .

[11]  Subhash Suri,et al.  Metric Embedding, Hyperbolic Space, and Social Networks , 2014, Symposium on Computational Geometry.

[12]  Jussi Väisälä,et al.  Gromov hyperbolic spaces , 2005 .

[13]  Yilun Shang On the likelihood of forests , 2016 .

[14]  A. Portilla,et al.  A characterization of Gromov hyperbolicity of surfaces with variable negative curvature , 2009 .

[15]  Hans-Jürgen Bandelt,et al.  1-Hyperbolic Graphs , 2003, SIAM J. Discret. Math..

[16]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[17]  M. Watkins Connectivity of transitive graphs , 1970 .

[18]  José M. Rodríguez,et al.  Bounds on Gromov hyperbolicity constant , 2015, 1503.01340.

[19]  David Coudert,et al.  Algorithme exact et approché pour le calcul de l'hyperbolicité d'un graphe , 2013 .

[20]  Chi Wang,et al.  Ollivier-Ricci curvature and fast approximation to tree-width in embeddability of QUBO problems , 2014, 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP).

[21]  Raphael Yuster,et al.  Computing the Girth of a Planar Graph in O(n logn) Time , 2009, ICALP.

[22]  Shi Li,et al.  Traffic Congestion in Expanders, $(p,δ)$--Hyperbolic Spaces and Product of Trees , 2013, ArXiv.

[23]  Jose Maria Sigarreta,et al.  Small values of the hyperbolicity constant in graphs , 2016, Discret. Math..

[24]  Chengpeng Zhang,et al.  Chordality and hyperbolicity of a graph , 2009, 0910.3544.

[25]  José M. Rodríguez,et al.  Hyperbolicity in the corona and join of graphs , 2014, 1410.2938.

[26]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[27]  Oded Schramm,et al.  Embeddings of Gromov Hyperbolic Spaces , 2000 .

[28]  Athanase Papadopoulos,et al.  Géométrie et théorie des groupes , 1990 .

[29]  Jose Maria Sigarreta,et al.  On the Hyperbolicity Constant of Line Graphs , 2011, Electron. J. Comb..

[30]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[31]  David Coudert,et al.  On the hyperbolicity of bipartite graphs and intersection graphs , 2016, Discret. Appl. Math..

[32]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..

[33]  William Sean Kennedy,et al.  On the Hyperbolicity of Large-Scale Networks , 2013, ArXiv.

[34]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..

[35]  José M. Rodríguez,et al.  On a classical theorem on the diameter and minimum degree of a graph , 2017 .

[36]  David Coudert,et al.  Recognition of C4-Free and 1/2-Hyperbolic Graphs , 2014, SIAM J. Discret. Math..

[37]  Laurent Viennot,et al.  Treewidth and Hyperbolicity of the Internet , 2011, 2011 IEEE 10th International Symposium on Network Computing and Applications.

[38]  Yilun Shang Lack of Gromov-Hyperbolicity in Colored Random Networks , 2011 .

[39]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Shing-Tung Yau,et al.  Graph homotopy and Graham homotopy , 2001, Discret. Math..

[41]  M. Bonk,et al.  Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains , 2000 .

[42]  J. Heinonen,et al.  Uniformizing Gromov hyperbolic spaces , 2001 .

[43]  M. Habib,et al.  Notes on diameters , centers , and approximating trees of δ-hyperbolic geodesic spaces and graphs , 2008 .

[44]  Antoine Vigneron,et al.  Computing the Gromov hyperbolicity of a discrete metric space , 2012, Inf. Process. Lett..

[45]  Jose Maria Sigarreta,et al.  Computing the hyperbolicity constant , 2011, Comput. Math. Appl..

[46]  H. Short,et al.  Notes on word hyperbolic groups , 1991 .

[47]  S. Buckley,et al.  Geometric characterizations of Gromov hyperbolicity , 2003 .

[48]  Yilun Shang Non-Hyperbolicity of Random Graphs with Given Expected Degrees , 2013 .

[49]  Characterizing hyperbolic spaces and real trees , 2008, 0810.1526.

[50]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[51]  Álvaro Martínez-Pérez,et al.  Chordality Properties and Hyperbolicity on Graphs , 2015, Electron. J. Comb..

[52]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[53]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metrics spaces II , 2004 .

[54]  José M. Rodríguez,et al.  On the hyperbolicity of edge-chordal and path-chordal graphs , 2016 .

[55]  J. M. Sigarreta Hyperbolicity in median graphs , 2013 .