Regularity Theory for the Spatially Homogeneous Boltzmann Equation with Cut-Off

Abstract.We develop the regularity theory of the spatially homogeneous Boltzmann equation with cut-off and hard potentials (for instance, hard spheres), by (i) revisiting the Lp theory to obtain constructive bounds, (ii) establishing propagation of smoothness and singularities, (iii) obtaining estimates on the decay of the singularities of the initial datum. Our proofs are based on a detailed study of the “regularity of the gain operator”. An application to the long-time behavior is presented.

[1]  B. Wennberg An Example of Nonuniqueness for Solutions to the Homogeneous Boltzmann Equation , 1999 .

[2]  E. Stein,et al.  Averages over hypersurfaces smoothness of generalized Radon transforms , 1990 .

[3]  A. Ja. Povzner,et al.  On the Boltzmann equation in the kinetic theory of gases , 1965 .

[4]  Fredrik Abrahamsson Strong L1 convergence to equilibrium without entropy conditions for the Boltzmann equation , 1999 .

[5]  Stéphane Mischler,et al.  On the spatially homogeneous Boltzmann equation , 1999 .

[6]  Cédric Villani,et al.  On the spatially homogeneous landau equation for hard potentials part i : existence, uniqueness and smoothness , 2000 .

[7]  P. Lions,et al.  Compactness in Boltzmann’s equation via Fourier integral operators and applications. III , 1994 .

[8]  Tommy Gustafsson,et al.  Global Lp-properties for the spatially homogeneous Boltzmann equation , 1988 .

[9]  Leif Arkeryd,et al.  Stability in L1 for the spatially homogenous Boltzmann equation , 1988 .

[10]  Cédric Villani,et al.  On the spatially homogeneous landau equation for hard potentials part ii : h-theorem and applications , 2000 .

[11]  Bernt Wennberg,et al.  A maxwellian lower bound for solutions to the Boltzmann equation , 1997 .

[12]  Cédric Villani,et al.  Cercignani's Conjecture is Sometimes True and Always Almost True , 2003 .

[13]  E. Stein,et al.  Averages over hypersurfaces: II , 1986 .

[14]  Leif Arkeryd,et al.  Intermolecular forces of infinite range and the Boltzmann equation , 1981 .

[15]  Xuguang Lu,et al.  A Direct Method for the Regularity of the Gain Term in the Boltzmann Equation , 1998 .

[16]  T. Carleman,et al.  Problèmes mathématiques dans la théorie cinétique des gaz , 1957 .

[17]  E. Stein,et al.  Averages of functions over hypersurfaces in ℝn , 1985 .

[18]  T. Goudon On boltzmann equations and fokker—planck asymptotics: Influence of grazing collisions , 1997 .

[19]  Laurent Desvillettes,et al.  A proof of the smoothing properties of the positive part of Boltzmann's kernel , 1998 .

[20]  B. Wennberg On moments and uniqueness for solutions to the space homogeneous Boltzmann equation , 1994 .

[21]  L. Arkeryd L∞ estimates for the space-homogeneous Boltzmann equation , 1983 .

[22]  B. Wennberg Regularity in the Boltzmann equation and the Radon transform , 1994 .

[23]  Bernt Wennberg,et al.  Stability and exponential convergence in L(p) for the spatially homogeneous Boltzmann equation , 1993 .

[24]  Radjesvarane Alexandre,et al.  Entropy Dissipation and Long-Range Interactions , 2000 .

[25]  H. Grad Principles of the Kinetic Theory of Gases , 1958 .

[26]  B. Wennberg Entropy dissipation and moment production for the Boltzmann equation , 1997 .

[27]  Laurent Desvillettes,et al.  Some applications of the method of moments for the homogeneous Boltzmann and Kac equations , 1993 .

[28]  Tommy Gustafsson,et al.  Lp-estimates for the nonlinear spatially homogeneous Boltzmann equation , 1986 .

[29]  Cédric Villani,et al.  On a New Class of Weak Solutions to the Spatially Homogeneous Boltzmann and Landau Equations , 1998 .

[30]  T. Carleman,et al.  Sur la théorie de l'équation intégrodifférentielle de Boltzmann , 1933 .

[31]  Giuseppe Toscani,et al.  On the Trend to Equilibrium for Some Dissipative Systems with Slowly Increasing a Priori Bounds , 2000 .