Lighting Normalization Algorithms for Face Verification

In this report, we address the problem of face verification across illumination, since it has been identified as one of the major factor degrading the performance of face recognition systems. First, a brief overview of face recognition together with its main challenges is made, before reviewing state-of-the-art approaches to cope with illumination variations. We then present investigated approaches, which consists in applying a pre-processing step to the face images, and we also present the underlying theory. Namely, we will study the effect of various photometric normalization algorithms on the performance of a system based on local feature extraction and generative models (Gaussian Mixture Models). Studied algorithms include the Multiscale Retinex, as well as two state-of-the-art approaches: the Self Quotient Image and an anisotropic diffusion based normalization. This last involves the resolution of large sparse system of equations, and hence different approaches to solve such problems are described, including the efficient multigrid framework. Performances of the normalization algorithms are assessed with the challenging BANCA database and its realistic protocols. Conducted experiments showed significant improvements in terms of verification error rates and are comparable to other state-of-the-art face verification systems on the same database.

[1]  Weiwei Zhang,et al.  Illumination modeling and normalization for face recognition , 2003, 2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443).

[2]  Azeddine Beghdadi,et al.  Quelques traitements bas niveau basés sur une analyse du contraste local , 1999 .

[3]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[6]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[7]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[8]  Ralph Gross,et al.  An Image Preprocessing Algorithm for Illumination Invariant Face Recognition , 2003, AVBPA.

[9]  Haitao Wang,et al.  Generalized quotient image , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[10]  David J. Kriegman,et al.  Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[11]  J. van Leeuwen,et al.  Audio- and Video-Based Biometric Person Authentication , 2001, Lecture Notes in Computer Science.

[12]  Josef Kittler,et al.  A Comparative Study of Automatic Face Verification Algorithms on the BANCA Database , 2003, AVBPA.

[13]  Josef Kittler,et al.  A comparison of photometric normalisation algorithms for face verification , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[14]  Jean-Philippe Thiran,et al.  The BANCA Database and Evaluation Protocol , 2003, AVBPA.

[15]  Lei Zhang,et al.  Pose Invariant Face Recognition Under Arbitrary Unknown Lighting Using Spherical Harmonics , 2004, ECCV Workshop BioAW.

[16]  Conrad Sanderson,et al.  On Local Features for Face Verification , 2004 .

[17]  Scott T. Acton,et al.  Multigrid anisotropic diffusion , 1998, IEEE Trans. Image Process..

[18]  Mark S. Drew,et al.  Removing Shadows From Images using Retinex , 2002, CIC.

[19]  Mark Ainsworth,et al.  Wavelets, multilevel methods and elliptic PDEs , 1997 .

[20]  Rahman Zia-ur,et al.  A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques , 1997 .

[21]  Florent Perronnin,et al.  A model of illumination variation for robust face recognition , 2003 .

[22]  Shimon Ullman,et al.  Face Recognition: The Problem of Compensating for Changes in Illumination Direction , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Andreas Ernst,et al.  Face detection with the modified census transform , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[24]  Laurence Meylan,et al.  Bio-inspired color image enhancement , 2004, IS&T/SPIE Electronic Imaging.

[25]  Samy Bengio,et al.  Face verification using adapted generative models , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[26]  Haitao Wang,et al.  Face recognition under varying lighting conditions using self quotient image , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[27]  Ron Kimmel,et al.  An Algebraic Multigrid Approach for Image Analysis , 2002, SIAM J. Sci. Comput..

[28]  Kuldip K. Paliwal,et al.  Polynomial features for robust face authentication , 2002, Proceedings. International Conference on Image Processing.

[29]  Martin Bichsel,et al.  Illumination invariant object recognition , 1995, Proceedings., International Conference on Image Processing.

[30]  Amnon Shashua,et al.  The Quotient Image: Class-Based Re-Rendering and Recognition with Varying Illuminations , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[32]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[33]  David J. Kriegman,et al.  What Is the Set of Images of an Object Under All Possible Illumination Conditions? , 1998, International Journal of Computer Vision.

[34]  No Value,et al.  IEEE International Conference on Image Processing , 2003 .

[35]  Mohamed Elayyadi Equations aux dérivées partielles et réseaux de neurones pour le traitement d'images. (Partial Differential Equations and Neural Networks for Images Processing) , 1997 .

[36]  Sébastien Marcel,et al.  Comparison of MLP and GMM Classifiers for Face Verification on XM2VTS , 2003, AVBPA.

[37]  D H Brainard,et al.  Analysis of the retinex theory of color vision. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[38]  Zia-ur Rahman,et al.  Properties and performance of a center/surround retinex , 1997, IEEE Trans. Image Process..

[39]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[41]  Andy M. Yip,et al.  Recent Developments in Total Variation Image Restoration , 2004 .

[42]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .