Toward Interactive Computations: A Rough-Granular Approach

We present an overview of Rough Granular Computing (RGC) approach to modeling complex systems and processes. We discuss the granular methodology in conjunction with paradigms originating in rough sets, such as approximation spaces. We attempt to show the methodology aimed at construction of complex concepts from raw data in hierarchical manner. We illustrate, how the inclusion of domain knowledge, relevant ontologies, and interactive consensus finding leads to more potent granular models for processes.

[1]  S. Tsumoto,et al.  Rough set methods and applications: new developments in knowledge discovery in information systems , 2000 .

[2]  Andrzej Skowron,et al.  Information Granules and Rough-Neural Computing , 2004 .

[3]  Krzysztof Pancerz,et al.  Discovering Concurrent Models from Data Tables with the ROSECON System , 2004, Fundam. Informaticae.

[4]  Andrzej Skowron,et al.  Optimization in Discovery of Compound Granules , 2008, Fundam. Informaticae.

[5]  Vladik Kreinovich,et al.  Handbook of Granular Computing , 2008 .

[6]  Jerzy W. Grzymala-Busse,et al.  Transactions on Rough Sets VI, Commemorating the Life and Work of Zdzislaw Pawlak, Part I , 2007, Trans. Rough Sets.

[7]  Jerzy W. Grzymala-Busse,et al.  Transactions on Rough Sets I , 2004, Lecture Notes in Computer Science.

[8]  Andrzej Skowron,et al.  Rough-Neural Computing: Techniques for Computing with Words , 2004, Cognitive Technologies.

[9]  Witold Pedrycz,et al.  Granular computing: an introduction , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[10]  Charu C. Aggarwal,et al.  Data Streams - Models and Algorithms , 2014, Advances in Database Systems.

[11]  Andrzej Skowron,et al.  Rough-Granular Computing in Human-Centric Information Processing , 2009, Human-Centric Information Processing Through Granular Modelling.

[12]  Lotfi A. Zadeh,et al.  A New Direction in AI: Toward a Computational Theory of Perceptions , 2001, AI Mag..

[13]  Michael Luck,et al.  Agent technology: Enabling next generation computing , 2003 .

[14]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[15]  Andrzej Skowron,et al.  On-Line Elimination of Non-relevant Parts of Complex Objects in Behavioral Pattern Identification , 2005, PReMI.

[16]  Jan G. Bazan Rough Sets and Granular Computing in Behavioral Pattern Identification and Planning , 2008 .

[17]  Andrzej Skowron,et al.  Logic for Artificial Intelligence: A Rasiowa–Pawlak School Perspective , 2008 .

[18]  Andrzej Skowron,et al.  Discovery of Process Models from Data and Domain Knowledge: A Rough-Granular Approach , 2007, PReMI.

[19]  T. Poggio,et al.  The Mathematics of Learning: Dealing with Data , 2005, 2005 International Conference on Neural Networks and Brain.

[20]  Son,et al.  A rough-granular computing in discovery of process models from data and domain knowledge , 2008 .

[21]  Wil M. P. van der Aalst,et al.  Genetic process mining: an experimental evaluation , 2007, Data Mining and Knowledge Discovery.

[22]  Andrzej Skowron,et al.  A Wistech Paradigm for Intelligent Systems , 2007, Trans. Rough Sets.

[23]  P. Grünwald The Minimum Description Length Principle (Adaptive Computation and Machine Learning) , 2007 .

[24]  Zbigniew Suraj,et al.  Rough set methods for the synthesis and analysis of concurrent processes , 2000 .

[25]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[26]  Andrzej Skowron,et al.  Risk Pattern Identification in the Treatment of Infants with Respiratory Failure Through Rough Set Modeling , 2006 .

[27]  E. Polak,et al.  System Theory , 1963 .

[28]  R. Sun Cognition and Multi-Agent Interactions: From Cognitive Modeling to Social Simulation , 2005 .

[29]  John F. Roddick,et al.  An Updated Bibliography of Temporal, Spatial, and Spatio-temporal Data Mining Research , 2000, TSDM.

[30]  Sinh Hoa Nguyen,et al.  Learning Sunspot Classification , 2006, Fundam. Informaticae.

[31]  Andrzej Skowron,et al.  Rough sets: Some extensions , 2007, Inf. Sci..

[32]  Andrzej Skowron,et al.  Rough sets and granular computing: Toward rough-granular computing , 2008 .

[33]  Fang-Xiang Wu Inference of Gene Regulatory Networks and its Validation , 2007 .

[34]  Andrzej Skowron,et al.  Complex Patterns , 2003, Fundam. Informaticae.

[35]  Zbigniew Suraj,et al.  Discovery of Concurrent Data Models from Experimental Tables: A Rough Set Approach , 1995, Fundam. Informaticae.

[36]  Dominik Slezak,et al.  Approximate Entropy Reducts , 2002, Fundam. Informaticae.

[37]  Andrzej Skowron,et al.  Rough Sets and Vague Concept Approximation: From Sample Approximation to Adaptive Learning , 2006, Trans. Rough Sets.

[38]  Jan G. Bazan Behavioral Pattern Identification Through Rough Set Modeling , 2005, Fundam. Informaticae.

[39]  Chrysostomos D. Stylios,et al.  Fuzzy Cognitive Maps , 2008 .

[40]  Andrzej Bargiela,et al.  Human-Centric Information Processing Through Granular Modelling , 2009, Human-Centric Information Processing Through Granular Modelling.

[41]  Michael Luck,et al.  A Manifesto for Agent Technology: Towards Next Generation Computing , 2004, Autonomous Agents and Multi-Agent Systems.

[42]  Andrzej Skowron,et al.  Automatic Planning of Treatment of Infants with Respiratory Failure Through Rough Set Modeling , 2006, RSCTC.

[43]  A. Siebes,et al.  Data Mining and Statistics , 2000, Computational Intelligence in Data Mining.

[44]  Tuan Trung Nguyen Eliciting Domain Knowledge in Handwritten Digit Recognition , 2005, PReMI.

[45]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[46]  Andrzej Skowron,et al.  Rudiments of rough sets , 2007, Inf. Sci..

[47]  S. R. Borrett,et al.  A method for representing and developing process models , 2006, q-bio/0605025.

[48]  JingTao Yao,et al.  Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation , 2010 .

[49]  Andrzej Skowron,et al.  Knowledge Representation Techniques (Studies in Fuzziness and Soft Computing) , 2006 .

[50]  Zdzislaw Pawlak Concurrent versus sequential - the rough sets perspective , 1992, Bull. EATCS.

[51]  David W. Scott Computing Science and Statistics : mining and modeling massive data sets in science, engineering, and business with a subtheme in environmental statistics : proceedings of the 29th symposium on the Interface, Houston, TX, May 14-17, 1997 , 1998 .

[52]  Naren Ramakrishnan,et al.  Network reconstruction from dynamic data , 2006, SKDD.

[53]  Tuan Trung Nyuyen Outlier and Exception Analysis in Rough Sets and Granular Computing , 2008 .

[54]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[55]  Andrzej Skowron,et al.  Layered Learning for Concept Synthesis , 2004, Trans. Rough Sets.

[56]  Scott A. Smolka,et al.  Interactive Computation: The New Paradigm , 2006 .

[57]  Andrzej Skowron,et al.  Knowledge Representation Techniques - A Rough Set Approach , 2006, Studies in Fuzziness and Soft Computing.

[58]  Lotfi A. Zadeh,et al.  Generalized theory of uncertainty (GTU) - principal concepts and ideas , 2006, Comput. Stat. Data Anal..

[59]  Andrzej Skowron,et al.  Calculi of Approximation Spaces , 2006, Fundam. Informaticae.

[60]  Sadaaki Miyamoto,et al.  Rough Sets and Current Trends in Computing , 2012, Lecture Notes in Computer Science.

[61]  Andrzej Skowron,et al.  Transactions on Rough Sets V , 2006, Trans. Rough Sets.

[62]  Peter Wegner,et al.  Why interaction is more powerful than algorithms , 1997, CACM.

[63]  Andrzej Skowron,et al.  Wisdom Granular Computing , 2008 .

[64]  Andrzej Skowron,et al.  Rough sets and concurrency , 1993 .

[65]  John F. Roddick,et al.  Temporal, Spatial, and Spatio-Temporal Data Mining , 2001, Lecture Notes in Computer Science.

[66]  Melanie Mitchell,et al.  Complex systems: Network thinking , 2006, Artif. Intell..

[67]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.