Coherent Ising machines—Quantum optics and neural network Perspectives

A coherent Ising machine (CIM) is a network of optical parametric oscillators (OPOs), in which the “strongest” collective mode of oscillation at well above threshold corresponds to an optimum solution of a given Ising problem. When a pump rate or network coupling rate is increased from below to above threshold, however, the eigenvectors with the smallest eigenvalue of the Ising coupling matrix [ J i j] appear near threshold and impede the machine to relax to true ground states. Two complementary approaches to attack this problem are described here. One approach is to utilize the squeezed/anti-squeezed vacuum noise of OPOs below threshold to produce coherent spreading over numerous local minima via quantum noise correlation, which could enable the machine to access either true ground states or excited states with eigen-energies close enough to that of ground states above threshold. The other approach is to implement a real-time error correction feedback loop so that the machine migrates from one local minimum to another during an explorative search for ground states. Finally, a set of qualitative analogies connecting the CIM and traditional computer science techniques are pointed out. In particular, belief propagation and survey propagation used in combinatorial optimization are touched upon.

[1]  Wenlong Wang,et al.  Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Yoshitaka Inui,et al.  Coherent Ising machines with error correction feedback , 2020, ArXiv.

[3]  Pavlos G. Lagoudakis,et al.  Realizing the classical XY Hamiltonian in polariton simulators. , 2016, Nature materials.

[4]  Mária Ercsey-Ravasz,et al.  A continuous-time MaxSAT solver with high analog performance , 2018, Nature Communications.

[5]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[6]  Natalia G. Berloff,et al.  Global optimization of spin Hamiltonians with gain-dissipative systems , 2018, Scientific Reports.

[7]  H. Mabuchi,et al.  Nonlinear quantum behavior of ultrashort-pulse optical parametric oscillators , 2018, Physical Review A.

[8]  Ieee Staff 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS) , 2013 .

[9]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[10]  Saikat Guha,et al.  A single shot coherent Ising machine based on a network of injection-locked multicore fiber lasers , 2019, Nature Communications.

[11]  Haim Sompolinsky,et al.  Dynamic Theory of the Spin Glass Phase , 1981 .

[12]  Jaijeet S. Roychowdhury,et al.  Oscillator-based Ising Machine , 2017, ArXiv.

[13]  Ken-ichi Kawarabayashi,et al.  Experimental investigation of performance differences between coherent Ising machines and a quantum annealer , 2018, Science Advances.

[14]  Guy Verschaffelt,et al.  A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems , 2019, Nature Communications.

[15]  R. Palmer,et al.  Solution of 'Solvable model of a spin glass' , 1977 .

[16]  Kazuyuki Aihara,et al.  A Quantum Model for Coherent Ising Machines: Discrete-time Measurement Feedback Formulation , 2017, 1706.02454.

[17]  Shimeng Yu,et al.  Harnessing Intrinsic Noise in Memristor Hopfield Neural Networks for Combinatorial Optimization , 2019, ArXiv.

[18]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[19]  Kazuyuki Aihara,et al.  Destabilization of Local Minima in Analog Spin Systems by Correction of Amplitude Heterogeneity. , 2018, Physical review letters.

[20]  Surya Ganguli,et al.  Statistical Mechanics of Deep Learning , 2020, Annual Review of Condensed Matter Physics.

[21]  Yoshihisa Yamamoto,et al.  Mapping of Ising models onto injection-locked laser systems. , 2011, Optics express.

[22]  Ken-ichi Kawarabayashi,et al.  A coherent Ising machine for 2000-node optimization problems , 2016, Science.

[23]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Singh,et al.  Photoelectron waiting times and atomic state reduction in resonance fluorescence. , 1989, Physical review. A, General physics.

[25]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  R. Byer,et al.  Network of time-multiplexed optical parametric oscillators as a coherent Ising machine , 2014, Nature Photonics.

[27]  W. Bialek,et al.  Are Biological Systems Poised at Criticality? , 2010, 1012.2242.

[28]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[29]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[30]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[31]  R. Byer,et al.  Coherent Ising machine based on degenerate optical parametric oscillators , 2013, 1311.2696.

[32]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[33]  Florent Krzakala,et al.  Statistical physics of inference: thresholds and algorithms , 2015, ArXiv.

[35]  S. Kak Information, physics, and computation , 1996 .

[36]  Fabio L. Traversa,et al.  Topological Field Theory and Computing with Instantons , 2016, ArXiv.

[37]  Natalia G. Berloff,et al.  Networks of non-equilibrium condensates for global optimization , 2018, New Journal of Physics.

[38]  Nir Davidson,et al.  Observing geometric frustration with thousands of coupled lasers. , 2013, Physical review letters.

[39]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[40]  S. Ganguli,et al.  Statistical mechanics of complex neural systems and high dimensional data , 2013, 1301.7115.

[41]  Mirko Krivánek,et al.  Simulated Annealing: A Proof of Convergence , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Ken-ichi Kawarabayashi,et al.  Coherent Ising Machine - Optical Neural Network Operating at the Quantum Limit - , 2018, 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[43]  S. Geman,et al.  Diffusions for global optimizations , 1986 .

[44]  John Beggs Editorial: Can There Be a Physics of the Brain? , 2015, Physical review letters.

[45]  Yoshihisa Yamamoto,et al.  Quantum correlation in degenerate optical parametric oscillators with mutual injections , 2015, 1506.00135.

[46]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[47]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[48]  H. Mabuchi,et al.  Embedding entanglement generation within a measurement-feedback coherent Ising machine. , 2019, 1906.04902.

[49]  Ryan Hamerly,et al.  A Recurrent Ising Machine in a Photonic Integrated Circuit , 2019, 1909.13877.

[50]  E. Bolthausen An Iterative Construction of Solutions of the TAP Equations for the Sherrington–Kirkpatrick Model , 2012, 1201.2891.

[52]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[53]  J. Hopfield,et al.  Computing with neural circuits: a model. , 1986, Science.

[54]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[55]  Zoltán Toroczkai,et al.  The Chaos Within Sudoku , 2012, Scientific Reports.

[56]  Milburn,et al.  Quantum theory of field-quadrature measurements. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[57]  Surya Ganguli,et al.  Statistical Mechanics of Optimal Convex Inference in High Dimensions , 2016 .

[58]  Hayato Goto Quantum Computation Based on Quantum Adiabatic Bifurcations of Kerr-Nonlinear Parametric Oscillators , 2018, Journal of the Physical Society of Japan.

[59]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[60]  Hideo Mabuchi,et al.  A coherent perceptron for all-optical learning , 2015, 1501.01608.

[61]  Hayato Goto,et al.  Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems , 2019, Science Advances.

[62]  H Sompolinsky,et al.  Dynamics of random neural networks with bistable units. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  A. Bray,et al.  Statistics of critical points of Gaussian fields on large-dimensional spaces. , 2006, Physical review letters.

[64]  Davide Pierangeli,et al.  Noise-enhanced spatial-photonic Ising machine , 2020, Nanophotonics.

[65]  Hiroki Takesue,et al.  Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network , 2018 .

[66]  Kazuyuki Aihara,et al.  A fully programmable 100-spin coherent Ising machine with all-to-all connections , 2016, Science.

[67]  C. Conti,et al.  Large-Scale Photonic Ising Machine by Spatial Light Modulation. , 2019, Physical review letters.

[68]  Dirk Englund,et al.  Heuristic recurrent algorithms for photonic Ising machines , 2020, Nature Communications.

[69]  Jin-Kao Hao,et al.  Breakout Local Search for the Max-Cutproblem , 2013, Eng. Appl. Artif. Intell..

[70]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[71]  James S. Langer,et al.  Annual review of condensed matter physics , 2010 .

[72]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[73]  Shoko Utsunomiya,et al.  Truncated Wigner theory of coherent Ising machines based on degenerate optical parametric oscillator network , 2016, 1605.08655.

[74]  K. Aihara,et al.  Combinatorial optimization using dynamical phase transitions in driven-dissipative systems. , 2017, Physical review. E.

[75]  Zoltán Toroczkai,et al.  Optimization hardness as transient chaos in an analog approach to constraint satisfaction , 2011, ArXiv.

[76]  G. Biroli Dynamical TAP approach to mean field glassy systems , 1999, cond-mat/9909415.

[77]  Raymond Beausoleil,et al.  Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks , 2020, Nature Electronics.

[78]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.

[79]  John Paul Strachan,et al.  Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing , 2017, Nature.

[80]  T. Toffoli Physics and computation , 1982 .

[81]  G Zaránd,et al.  Using hysteresis for optimization. , 2002, Physical review letters.