Generating limit cycles from a nilpotent critical point via normal forms

Abstract It is well known that the normal form theory can be applied to solve the center–focus problem for monodromic planar nilpotent singularities. In this paper we see how this theory can also be applied to generate limit cycles from this type of singularities.

[1]  R. Moussu,et al.  Symétrie et forme normale des centres et foyers dégénérés , 1982, Ergodic Theory and Dynamical Systems.

[2]  Jaume Giné,et al.  Local analytic integrability for nilpotent centers , 2003, Ergodic Theory and Dynamical Systems.

[3]  H. Zoladek,et al.  The Analytic and Formal Normal Form for the Nilpotent Singularity , 2002 .

[4]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  R. Roussarie,et al.  Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem , 1998 .

[6]  C. Zuppa Order of cyclicity of the singular point of lineard's polynomial vector fields , 1981 .

[7]  Shi Songling,et al.  On the structure of Poincaré-Lyapunov constants for the weak focus of polynomial vector fields , 1984 .

[8]  Santiago Ibáñez,et al.  Singularities of vector fields on , 1998 .

[9]  J. Walker,et al.  Book Reviews : THEORY OF BIFURCATIONS OF DYNAMIC SYSTEMS ON A PLANE A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier J. Wiley & Sons, New York , New York (1973) , 1976 .

[10]  Dongming Wang,et al.  On the conditions of Kukles for the existence of a Centre , 1990 .

[11]  A. Gasull,et al.  Center Problem for Several Differential Equations via Cherkas' Method☆ , 1998 .

[12]  A. Andreev,et al.  The Center-Focus Problem for a System with Homogeneous Nonlinearities in the Case of Zero Eigenvalues of the Linear Part , 2003 .

[13]  Armengol Gasull,et al.  Monodromy and Stability for Nilpotent Critical Points , 2005, Int. J. Bifurc. Chaos.

[14]  Francesc Mañosas,et al.  Cyclicity of a family of vector fields , 1995 .

[15]  William F. Langford,et al.  Degenerate Hopf bifurcation formulas and Hilbert's 16th problem , 1989 .