Heteroepitaxial Growth of Black Phosphorus on Tin Monosulfide.

Black phosphorus (Black P), a layered semiconductor with a layer-dependent bandgap and high carrier mobility, is a promising candidate for next-generation electronics and optoelectronics. However, the synthesis of large-area, layer-precise, single crystalline Black P films remains a challenge due to their high nucleation energy. Here, we report the molecular beam heteroepitaxy of single crystalline Black P films on a tin monosulfide (SnS) buffer layer grown on Au(100). The layer-by-layer growth mode enables the preparation of monolayer to trilayer films, with band gaps that reflect layer-dependent quantum confinement.

[1]  W. J. Chung,et al.  Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. , 2023, Nature nanotechnology.

[2]  Yang Xu,et al.  Growth of single-crystal black phosphorus and its alloy films through sustained feedstock release , 2023, Nature Materials.

[3]  Yung‐Chang Lin,et al.  Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays , 2023, Nature Electronics.

[4]  Yaoqiao Hu,et al.  Non-epitaxial single-crystal 2D material growth by geometric confinement , 2023, Nature.

[5]  Li-Yu Daisy Liu,et al.  Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel. , 2022, Nature nanotechnology.

[6]  Siheng Li,et al.  Heteroepitaxy of semiconducting 2H-MoTe2 thin films on arbitrary surfaces for large-scale heterogeneous integration , 2022, Nature Synthesis.

[7]  R. Ruoff,et al.  Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111) , 2022, Nature.

[8]  R. Ruoff,et al.  Wafer-scale single-crystal monolayer graphene grown on sapphire substrate , 2022, Nature Materials.

[9]  E. Wang,et al.  Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire , 2021, Nature Nanotechnology.

[10]  R. Ruoff,et al.  Single-crystal, large-area, fold-free monolayer graphene , 2021, Nature.

[11]  S. Lau,et al.  Large-scale growth of few-layer two-dimensional black phosphorus , 2021, Nature Materials.

[12]  Ji Chen,et al.  Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2 , 2021, Science.

[13]  Zhen Cao,et al.  Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides , 2020, Nature Materials.

[14]  Wanjun Li,et al.  Strain and electric-field induced tunable electronic properties of blue phosphorus-GeS/SnS/SnSe (orthorhombic) vdW heterostructures , 2020 .

[15]  D. Duong,et al.  Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation , 2020, Nature Nanotechnology.

[16]  Shenyang Huang,et al.  The optical conductivity of few-layer black phosphorus by infrared spectroscopy , 2020, Nature Communications.

[17]  Han Zhang,et al.  Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon , 2020, Nature Communications.

[18]  Jun Hu,et al.  Synthesis of Monolayer Blue Phosphorus Enabled by Silicon Intercalation. , 2020, ACS nano.

[19]  Chien-Chih Tseng,et al.  Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111) , 2020, Nature.

[20]  Sung Won Jung,et al.  Black phosphorus as a bipolar pseudospin semiconductor , 2020, Nature Materials.

[21]  J. M. Kikkawa,et al.  Large-area epitaxial growth of curvature-stabilized ABC trilayer graphene , 2020, Nature Communications.

[22]  Bin Wang,et al.  Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil , 2020, Nature Nanotechnology.

[23]  Chengding Gu,et al.  Reversible Oxidation of Blue Phosphorus Monolayer on Au(111). , 2019, Nano letters.

[24]  K. Loh,et al.  Gate-Tunable In-Plane Ferroelectricity in Few-Layer SnS. , 2019, Nano letters.

[25]  Hui‐Ming Cheng,et al.  Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt , 2019, Nature Communications.

[26]  Enge Wang,et al.  Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper , 2019, Nature.

[27]  Fengnian Xia,et al.  Black phosphorus and its isoelectronic materials , 2019, Nature Reviews Physics.

[28]  H. Nan,et al.  Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy , 2019, Nature Communications.

[29]  A. Seitsonen,et al.  Epitaxial Synthesis of Blue Phosphorene. , 2018, Small.

[30]  A. Varykhalov,et al.  Band Renormalization of Blue Phosphorus on Au(111). , 2018, Nano letters.

[31]  L. Chu,et al.  Quasi‐Monolayer Black Phosphorus with High Mobility and Air Stability , 2018, Advanced materials.

[32]  Zhenyu Li,et al.  Phosphorus Nanostripe Arrays on Cu(110): A Case Study to Understand the Substrate Effect on the Phosphorus thin Film Growth , 2017 .

[33]  F. Huo,et al.  Growth of Quasi-Free-Standing Single-Layer Blue Phosphorus on Tellurium Monolayer Functionalized Au(111). , 2017, ACS nano.

[34]  M. Katsnelson,et al.  Probing Single Vacancies in Black Phosphorus at the Atomic Level , 2017, Nano letters.

[35]  T. Low,et al.  Infrared fingerprints of few-layer black phosphorus , 2016, Nature Communications.

[36]  Shu Zhong,et al.  Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus. , 2016, Nano letters.

[37]  Aaron M. Jones,et al.  Highly anisotropic and robust excitons in monolayer black phosphorus. , 2014, Nature nanotechnology.

[38]  B. Sumpter,et al.  Electronic bandgap and edge reconstruction in phosphorene materials. , 2014, Nano letters.

[39]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[40]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[41]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[42]  Supplementary Figures , 2022 .