Generation of classical groups

Each finite simple group other thanU3(3) can be generated by three of its involutions. In fact, each such group is generated by two elements, of which one is strongly real and the other is an involution.

[1]  Francesca Dalla Volta Gruppi ortogonali di indice di Witt minimale generati da tre involuzioni , 1992 .

[2]  M. Liebeck,et al.  Centralizers of Semisimple Elements in Finite Twisted Groups of Lie Type , 1985 .

[3]  Michael Aschbacher,et al.  On the maximal subgroups of the finite classical groups , 1984 .

[4]  G. A. Miller Possible orders of two generators of the alternating and of the symmetric group , 1928 .

[5]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[6]  R. Gonchigdorzh Hereditary and semihereditary rings without nilpotent elements , 1990 .

[7]  G. Lusztig,et al.  The characters of the finite unitary groups , 1977 .

[8]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[9]  P. C. Gager Maximal tori in finite groups of Lie type , 1973 .

[10]  K. Zsigmondy,et al.  Zur Theorie der Potenzreste , 1892 .

[11]  M. Tamburini,et al.  Generation of some orthogonal groups by a set of three involutions , 1991 .

[12]  L. Dickson Linear Groups, with an Exposition of the Galois Field Theory , 1958 .

[13]  P. B. Kleidman The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ8+(q) and of their automorphism groups , 1987 .

[14]  Jørn B. Olsson,et al.  Remarks on symbols, hooks and degrees of unipotent characters , 1986, J. Comb. Theory, Ser. A.

[15]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[16]  T. Weigel Generation of exceptional groups of Lie-type , 1992 .

[17]  Bomshik Chang,et al.  The conjugate classes of Chevalley groups of type (G2) , 1968 .

[18]  G. B. Robinson,et al.  Representation theory of the symmetric group , 1961 .

[19]  William M. Kantor,et al.  Linear groups containing a singer cycle , 1980 .

[20]  I. G. MacDonald,et al.  Lectures on Lie Groups and Lie Algebras: Simple groups of Lie type , 1995 .

[21]  A. Woldar,et al.  The symmetric genus of sporadic groups , 1992 .

[22]  C. Hering Transitive linear groups and linear groups which contain irreducible subgroups of prime order , 1974 .

[23]  Ya. N. Nuzhin Generating triples of involutions of chevalley groups over a finite field of characteristic 2 , 1990 .

[24]  William M. Kantor,et al.  The probability of generating a finite classical group , 1990 .

[25]  Christoph Hering,et al.  Transitive linear groups and linear groups which contain irreducible subgroups of prime order, II , 1985 .

[26]  Gunter Malle,et al.  Disconnected groups of Lie type as Galois groups. , 1992 .

[27]  L. D. Martino,et al.  2-Generation of finite simple groups and some related topics , 1991 .

[28]  Michael Aschbacher,et al.  Corrections to “Involutions in Chevalley groups over fields of even order” , 1976, Nagoya Mathematical Journal.