Positive real synthesis using matrix inequalities for mechanical networks: application to vehicle suspension

This paper presents a procedure for the synthesis of positive real controllers based on matrix inequalities. Problems with H/sub 2/ and H/sub /spl infin// cost are considered and the resulting bilinear matrix inequality problems are solved using local, iterative algorithms. The procedure is applied to the synthesis of passive suspensions for the optimization of certain performance measures for a quarter-car model. The characterization of the positive real constraint using matrix inequalities and the use of a new mechanical element called the inerter, permits the optimization over the entire class of positive real admittances and the realization of the resulting admittance using passive elements. The optimization results are compared with previous results obtained using optimization over fixed-structure admittances. The proposed method can reproduce the previous results and achieve better results in certain cases. Results of the experimental testing of a mechanical network involving an inerter are presented.

[1]  Jose C. Geromel,et al.  Synthesis of positive real /spl Hscr//sub 2/ controllers , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[2]  Jun Wang,et al.  Mixed GL2/H2/GH2 control with pole placement and its application to vehicle suspension systems , 2001 .

[3]  R. G. Coyle,et al.  Introduction to system dynamics , 1996 .

[4]  Takashi Shimomura LMI-Based Iterative! Synthesis of Strictly Positive Real 3-12 Controllers' , 2000 .

[5]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[6]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[7]  Malcolm C. Smith Synthesis of mechanical networks: the inerter , 2002, IEEE Trans. Autom. Control..

[8]  Carsten W. Scherer,et al.  Multi-Objective Output-Feedback Control via LMI Optimization , 1996 .

[9]  Jose C. Geromel,et al.  Synthesis of Positive Real 7iz Controllers , 1996 .

[10]  Fu-Cheng Wang,et al.  Performance benefits in passive vehicle suspensions employing inerters , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[11]  Franklin Fa-Kun Kuo,et al.  Network analysis and synthesis , 1962 .

[12]  A. Packard,et al.  Robust and Filters for Uncertain LFT Systems , 2005 .

[13]  Richard James Duffin,et al.  Impedance Synthesis without Use of Transformers , 1949 .

[14]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[15]  Andrew Packard,et al.  Robust H2 and H∞ filters for uncertain LFT systems , 2005, IEEE Trans. Autom. Control..

[16]  O. Brune Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency , 1931 .

[17]  E. A. S Guillemin,et al.  Synthesis of Passive Networks , 1957 .

[18]  Robert W. Newcomb,et al.  Linear multiport synthesis , 1966 .

[19]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[20]  Stephen P. Boyd,et al.  A path-following method for solving BMI problems in control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).