Retinex by Higher Order Total Variation L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} Decomp

In this paper, we propose a reflectance and illumination decomposition model for the Retinex problem via high-order total variation and $$L^{1}$$L1 decomposition. Based on the observation that illumination varies smoother than reflectance, we propose a convex variational model which can effectively decompose the gradient field of images into salient edges and relatively smoother illumination field through the first- and second-order total variation regularizations. The proposed model can be efficiently solved by a primal–dual splitting method. Numerical experiments on both grayscale and color images show the strength of the proposed model with applications to Retinex illusions, medical image bias field removal, and color image shadow correction.

[1]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[2]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[3]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[4]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[5]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[6]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[7]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[8]  Xue-Cheng Tai,et al.  Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional , 2005, International Journal of Computer Vision.

[9]  Françoise Demengel,et al.  Fonctions à hessien borné , 1984 .

[10]  M. Bergounioux,et al.  A Second-Order Model for Image Denoising , 2010 .

[11]  Jean-Michel Morel,et al.  A PDE Formalization of Retinex Theory , 2010, IEEE Transactions on Image Processing.

[12]  Xue-Cheng Tai,et al.  A Fast Algorithm for Euler's Elastica Model Using Augmented Lagrangian Method , 2011, SIAM J. Imaging Sci..

[13]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[14]  Edoardo Provenzi,et al.  Issues About Retinex Theory and Contrast Enhancement , 2009, International Journal of Computer Vision.

[15]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[16]  Michael Elad,et al.  A Variational Framework for Retinex , 2002, IS&T/SPIE Electronic Imaging.

[17]  Alessandro Rizzi,et al.  A computational approach to color adaptation effects , 2000, Image Vis. Comput..

[18]  Jianhong Shen,et al.  EULER'S ELASTICA AND CURVATURE BASED INPAINTINGS , 2002 .

[19]  Aichi Chien,et al.  An L1-based variational model for Retinex theory and its application to medical images , 2011, CVPR 2011.

[20]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[21]  S. Osher,et al.  A TV Bregman iterative model of Retinex theory , 2012 .

[22]  Wotao Yin,et al.  The Total Variation Regularized L1 Model for Multiscale Decomposition , 2007, Multiscale Model. Simul..

[23]  S. Setzer,et al.  Infimal convolution regularizations with discrete ℓ1-type functionals , 2011 .

[24]  Michael K. Ng,et al.  A Total Variation Model for Retinex , 2011, SIAM J. Imaging Sci..

[25]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[26]  Jahn Müller,et al.  Higher-Order TV Methods—Enhancement via Bregman Iteration , 2012, Journal of Scientific Computing.

[27]  G. Steidl,et al.  Variational Methods with Higher–Order Derivatives in Image Processing , 2007 .

[28]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[29]  Stanley Osher,et al.  A unifying retinex model based on non-local differential operators , 2013, Electronic Imaging.

[30]  Carola-Bibiane Schönlieb,et al.  A Combined First and Second Order Variational Approach for Image Reconstruction , 2012, Journal of Mathematical Imaging and Vision.

[31]  A. Logvinenko Lightness Induction Revisited , 1999, Perception.