Retinex by Higher Order Total Variation L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} Decomp
暂无分享,去创建一个
[1] D. Gabay. Applications of the method of multipliers to variational inequalities , 1983 .
[2] Karl Kunisch,et al. Total Generalized Variation , 2010, SIAM J. Imaging Sci..
[3] Tony F. Chan,et al. A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..
[4] Arvid Lundervold,et al. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..
[5] E. Land,et al. Lightness and retinex theory. , 1971, Journal of the Optical Society of America.
[6] Stanley Osher,et al. A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..
[7] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[8] Xue-Cheng Tai,et al. Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional , 2005, International Journal of Computer Vision.
[9] Françoise Demengel,et al. Fonctions à hessien borné , 1984 .
[10] M. Bergounioux,et al. A Second-Order Model for Image Denoising , 2010 .
[11] Jean-Michel Morel,et al. A PDE Formalization of Retinex Theory , 2010, IEEE Transactions on Image Processing.
[12] Xue-Cheng Tai,et al. A Fast Algorithm for Euler's Elastica Model Using Augmented Lagrangian Method , 2011, SIAM J. Imaging Sci..
[13] P. Lions,et al. Image recovery via total variation minimization and related problems , 1997 .
[14] Edoardo Provenzi,et al. Issues About Retinex Theory and Contrast Enhancement , 2009, International Journal of Computer Vision.
[15] Tony F. Chan,et al. Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..
[16] Michael Elad,et al. A Variational Framework for Retinex , 2002, IS&T/SPIE Electronic Imaging.
[17] Alessandro Rizzi,et al. A computational approach to color adaptation effects , 2000, Image Vis. Comput..
[18] Jianhong Shen,et al. EULER'S ELASTICA AND CURVATURE BASED INPAINTINGS , 2002 .
[19] Aichi Chien,et al. An L1-based variational model for Retinex theory and its application to medical images , 2011, CVPR 2011.
[20] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[21] S. Osher,et al. A TV Bregman iterative model of Retinex theory , 2012 .
[22] Wotao Yin,et al. The Total Variation Regularized L1 Model for Multiscale Decomposition , 2007, Multiscale Model. Simul..
[23] S. Setzer,et al. Infimal convolution regularizations with discrete ℓ1-type functionals , 2011 .
[24] Michael K. Ng,et al. A Total Variation Model for Retinex , 2011, SIAM J. Imaging Sci..
[25] Tony F. Chan,et al. Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..
[26] Jahn Müller,et al. Higher-Order TV Methods—Enhancement via Bregman Iteration , 2012, Journal of Scientific Computing.
[27] G. Steidl,et al. Variational Methods with Higher–Order Derivatives in Image Processing , 2007 .
[28] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[29] Stanley Osher,et al. A unifying retinex model based on non-local differential operators , 2013, Electronic Imaging.
[30] Carola-Bibiane Schönlieb,et al. A Combined First and Second Order Variational Approach for Image Reconstruction , 2012, Journal of Mathematical Imaging and Vision.
[31] A. Logvinenko. Lightness Induction Revisited , 1999, Perception.