New and old concepts in thermoelectric materials.

Herein we cover the key concepts in the field of thermoelectric materials research, present the current understanding, and show the latest developments. Current research is aimed at increasing the thermoelectric figure of merit (ZT) by maximizing the power factor and/or minimizing the thermal conductivity. Attempts at maximizing the power factor include the development of new materials, optimization of existing materials by doping, and the exploration of nanoscale materials. The minimization of the thermal conductivity can come through solid-solution alloying, use of materials with intrinsically low thermal conductivity, and nanostructuring. Herein we describe the most promising bulk materials with emphasis on results from the last decade. Single-phase bulk materials are discussed in terms of chemistry, crystal structure, physical properties, and optimization of thermoelectric performance. The new opportunities for enhanced performance bulk nanostructured composite materials are examined and a look into the not so distant future is attempted.

[1]  Qingjie Zhang,et al.  Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method , 2009 .

[2]  M. Oh,et al.  Thermoelectric properties of AgPbmSbTem+2 (12≤ m≤26) at elevated temperature , 2009 .

[3]  M. Kanatzidis,et al.  Thermoelectric properties and nanostructuring in the p-type materials NaPb 18-xSn xMTe 20 (M = Sb, Bi) , 2009 .

[4]  C. B. Vining An inconvenient truth about thermoelectrics. , 2009, Nature materials.

[5]  M. Kanatzidis,et al.  The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy , 2008 .

[6]  Ctirad Uher,et al.  Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. , 2008, Angewandte Chemie.

[7]  Jihui Yang,et al.  Evaluation of Half‐Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties , 2008 .

[8]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[9]  S. D. Mahanti,et al.  Electronic structure of Ga-, In-, and Tl-doped PbTe: A supercell study of the impurity bands , 2008 .

[10]  Z. Dashevsky,et al.  The search for mechanically stable PbTe based thermoelectric materials , 2008 .

[11]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[12]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[13]  T. Sun,et al.  Nanostructures in high-performance (GeTe)x(AgSbTe2)100−x thermoelectric materials , 2008, Nanotechnology.

[14]  J. Heremans,et al.  Measurements of the energy band gap and valence band structure of AgSbTe 2 , 2008 .

[15]  M. Kanatzidis,et al.  First-principles study of the electronic, optical, and lattice vibrational properties of AgSbTe 2 , 2008 .

[16]  Jian He,et al.  Thermoelectric properties of La0.9CoFe3Sb12-CoSb3 skutterudite nanocomposites , 2008 .

[17]  M. Kanatzidis,et al.  Substitution of Bi for Sb and its Role in the Thermoelectric Properties and Nanostructuring in Ag1−xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) , 2008 .

[18]  M. Oh,et al.  Electronic structure and thermoelectric transport properties of AgTlTe: First-principles calculations , 2008 .

[19]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[20]  J. Heremans,et al.  Low temperature thermal, thermoelectric, and thermomagnetic transport in indium rich Pb1−xSnxTe alloys , 2008 .

[21]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[22]  George S. Nolas,et al.  Inorganic clathrate-II materials of group 14: synthetic routes and physical properties , 2008 .

[23]  Z. Dashevsky,et al.  Mechanical properties of PbTe-based thermoelectric semiconductors , 2008 .

[24]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[25]  S. Mahanti,et al.  Deep defect states in narrow band-gap semiconductors , 2007 .

[26]  T. Tritt,et al.  Thermal conductivity of CoSb3 nano‐composites grown via a novel solvothermal nano‐plating technique , 2007 .

[27]  S. Aliev,et al.  α → β phase transition of Ag2Te in the AgSbTe2 alloy of the Ag-Sb-Te system , 2007 .

[28]  J. Tu,et al.  Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites , 2007 .

[29]  G. Madsen,et al.  Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2 , 2007 .

[30]  P. Jena,et al.  Theoretical study of deep-defect states in bulk PbTe and in thin films , 2007 .

[31]  R. Funahashi,et al.  Fabrication and Application of an Oxide Thermoelectric System , 2007 .

[32]  Ctirad Uher,et al.  Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. , 2007, Journal of the American Chemical Society.

[33]  Fei Ren,et al.  Nanostructured Thermoelectric Materials and High-Efficiency Power-Generation Modules , 2007 .

[34]  Ronggui Yang,et al.  Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites , 2007 .

[35]  R. Darling,et al.  Thermopower and electrical conductivity of sodium-doped V2O5 thin films , 2007 .

[36]  Matthew J. Kramer,et al.  In-situ elevated-temperature TEM study of (AgSbTe2)15(GeTe)85 , 2007 .

[37]  T. Tritt,et al.  Solution-Chemical Syntheses of Nano-Structured Bi2Te3 and PbTe Thermoelectric Materials , 2007 .

[38]  X. Zhao,et al.  Microstructure and electrical properties of quenched AgPb18Sb1−xTe20 thermoelectric materials , 2007 .

[39]  George S. Nolas,et al.  PbTe nanocomposites synthesized from PbTe nanocrystals , 2007 .

[40]  G. J. Snyder,et al.  Zintl phases for thermoelectric devices. , 2007, Dalton transactions.

[41]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[42]  M. J. Kramer,et al.  Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15(GeTe)85 thermoelectric material , 2007 .

[43]  M. Kanatzidis,et al.  Atomic ordering and gap formation in Ag-Sb-based ternary chalcogenides. , 2007, Physical review letters.

[44]  Han Li,et al.  Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure , 2007 .

[45]  Lidong Chen,et al.  Synthesis and Thermoelectric Properties of Lead Chalcogenide Nanocomposites , 2007 .

[46]  L. Forró,et al.  High-pressure resistivity and thermoelectric power in Yb14MnSb11 , 2007 .

[47]  Jian He,et al.  The Study of Solvothermal Synthesis of Nano-Engineered CoSb3 Skutterudite Thermoelectric Materials , 2007 .

[48]  M. Kanatzidis,et al.  Structure inhomogeneities, shallow defects, and charge transport in the series of thermoelectric materials K2Bi8−xSbxSe13 , 2006 .

[49]  Jonathan D'Angelo,et al.  Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. , 2006, Journal of the American Chemical Society.

[50]  Georg K. H. Madsen,et al.  Experimental and theoretical investigations of strongly correlated FeSb 2 − x Sn x , 2006 .

[51]  M. Kanatzidis,et al.  Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation , 2006 .

[52]  M. Kanatzidis,et al.  Coexistence of large thermopower and degenerate doping in the nanostructured material Ag0.85SnSb1.15Te3 , 2006 .

[53]  Jonathan D'Angelo,et al.  High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. , 2006, Angewandte Chemie.

[54]  G. Madsen,et al.  Electronic structure and transport in the low-temperature thermoelectric Cs Bi 4 Te 6 : Semiclassical transport equations , 2006 .

[55]  Jonathan D'Angelo,et al.  Nanostructuring and High Thermoelectric Efficiency in p‐Type Ag(Pb1 – ySny)mSbTe2 + m , 2006 .

[56]  K. Kishida,et al.  High thermoelectric performance of type-III clathrate compounds of the Ba-Ge-Ga system , 2006 .

[57]  G. J. Snyder,et al.  Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation , 2006 .

[58]  K. Koumoto,et al.  Complex Oxide Materials for Potential Thermoelectric Applications , 2006 .

[59]  George S. Nolas,et al.  Recent Developments in Bulk Thermoelectric Materials , 2006 .

[60]  Rama Venkatasubramanian,et al.  Aspects of Thin-Film Superlattice Thermoelectric Materials, Devices, and Applications , 2006 .

[61]  Terry M. Tritt,et al.  Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .

[62]  Min Zhou,et al.  High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering , 2006 .

[63]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[64]  G. Stucky,et al.  Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30 , 2006 .

[65]  Terry M. Tritt,et al.  Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C , 2006 .

[66]  D. Rowe Thermoelectrics Handbook , 2005 .

[67]  M. Kanatzidis,et al.  Ab initio studies of the electronic structure of defects in PbTe , 2006, cond-mat/0605538.

[68]  Ali Shakouri,et al.  Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles , 2005 .

[69]  S. Yamanaka,et al.  Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity , 2005 .

[70]  S. Mahanti,et al.  Charge ordering and self-assembled nanostructures in a fcc Coulomb lattice gas , 2005, 1501.01064.

[71]  Kuei-Fang Hsu,et al.  Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. , 2005, Journal of the American Chemical Society.

[72]  R. Funahashi,et al.  The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds , 2005 .

[73]  Takashi Goto,et al.  Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni) , 2005 .

[74]  A. Bentien,et al.  Transport properties of composition tuned α- and β-Eu8Ga16-xGe30+x , 2005 .

[75]  M. Dehmas,et al.  Beneficial effect of Ni substitution on the thermoelectric properties in partially filled Ca{sub y}Co{sub 4-x}Ni{sub x}Sb{sub 12} skutterudites , 2005 .

[76]  S. Sakurada,et al.  Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds , 2005 .

[77]  Xing Zhang,et al.  Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites , 2005 .

[78]  E. Godzhaev,et al.  Thermoelectric Properties of TlIn1 – xYbxTe2 (0.01 ≤ x ≤ 0.09) Crystals , 2004 .

[79]  R. Asahi,et al.  Thermoelectric Properties of Highly Textured Ca-Doped (ZnO)mIn2O3 Ceramics , 2004 .

[80]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .

[81]  G. J. Snyder,et al.  Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3: a combined maximum entropy method X-ray electron density and ab initio electronic structure study. , 2004, Chemistry.

[82]  G. Meisner,et al.  Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds , 2004 .

[83]  K. Ito,et al.  Effects of in-doping on the thermoelectric properties of β-Zn4Sb3 , 2004 .

[84]  G. J. Snyder,et al.  Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties , 2004, Nature materials.

[85]  D. Rowe,et al.  Solid solution formation in the Zn4Sb3–Cd4Sb3 system , 2004 .

[86]  M. Kanatzidis,et al.  A new thermoelectric material: CsBi4Te6. , 2004, Journal of the American Chemical Society.

[87]  M. Dehmas,et al.  High temperature transport properties of partially filled CaxCo4Sb12 skutterudites , 2004 .

[88]  I. Terasaki,et al.  Thermal conductivity of the thermoelectric layered cobalt oxides measured by the Harman method , 2004, cond-mat/0404248.

[89]  M. Kanatzidis,et al.  Lattice thermal conductivity of K2(Bi1−zSbz)8Se13 solid solutions , 2004 .

[90]  Ali Shakouri,et al.  Improved thermoelectric power factor in metal-based superlattices. , 2004, Physical review letters.

[91]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[92]  G. Stucky,et al.  Thermal conductivity of thermoelectric clathrates , 2004 .

[93]  David J. Singh,et al.  Electronic structure and transport in type-I and type-VIII clathrates containing strontium, barium, and europium , 2003 .

[94]  M. Kanatzidis,et al.  Improvement in the thermoelectric properties of pressure-tuned β-K2Bi8Se13 , 2003 .

[95]  M. Kanatzidis,et al.  Thermoelectric Properties and Site-Selective Rb + /K + Distribution in the K2-xRbxBi8Se13 Series , 2003 .

[96]  R. Cava,et al.  Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 , 2003, Nature.

[97]  M. Shikano,et al.  Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure , 2003 .

[98]  P. McMillan,et al.  Thermal conductivity of elemental crystalline silicon clathrate Si136 , 2003 .

[99]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[100]  M. Kanatzidis,et al.  Synthesis, Crystallographic Studies, and Characterization of K2Bi8Se13—xSx Solid Solutions , 2003 .

[101]  Z. H. Dughaish Lead telluride as a thermoelectric material for thermoelectric power generation , 2002 .

[102]  M. Kanatzidis,et al.  Highly anisotropic crystal growth and thermoelectric properties of K2Bi8−xSbxSe13 solid solutions: Band gap anomaly at low x , 2002 .

[103]  M. Hervieu,et al.  New misfit cobaltites [Pb0.7A0.4Sr1.9O3][CoO2]1.8 (A = Hg, Co) with large thermopower , 2002 .

[104]  M. Kanatzidis,et al.  Bi/Sb distribution and its consequences in solid solution members of the thermoelectric materials K2Bi8−xSbxSe13☆ , 2002 .

[105]  M. Kanatzidis,et al.  Electronic structure of K_2Bi_8Se_13 , 2002 .

[106]  C. Uher,et al.  Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni , 2002 .

[107]  Brian C. Sales,et al.  Smaller Is Cooler , 2002, Science.

[108]  T. Yamamoto,et al.  Physical properties of the misfit-layered (Bi,Pb)-Sr-Co-O system: Effect of hole doping into a triangular lattice formed by low-spin Co ions , 2002, cond-mat/0201176.

[109]  M. Kanatzidis,et al.  Angle-resolved photoemission study of the high-performance low-temperature thermoelectric material CSBi4Te6 , 2002 .

[110]  M. Dresselhaus,et al.  Chapter 1 Quantum wells and quantum wires for potential thermoelectric applications , 2001 .

[111]  Qiang Shen,et al.  Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds , 2001 .

[112]  H. Metiu,et al.  Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30,Sr8Ga16Ge30,Ba8Ga16Si30, and Ba8In16Sn30 , 2001 .

[113]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[114]  A. Maignan,et al.  Large thermopower in a metallic cobaltite: The layered Tl-Sr-Co-O misfit , 2001 .

[115]  E. Prociów,et al.  Structure of Ge-Based Films Exhibiting Thermoelectric Effect , 2001 .

[116]  C. Uher,et al.  Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12 , 2001 .

[117]  Kazuo T. Nakamura,et al.  High-Temperature Thermoelectric Properties of NaxCoO2-δ Single Crystals , 2001 .

[118]  R. Funahashi,et al.  Thermoelectric properties of Pb- and Ca-doped (Bi2Sr2O4)xCoO2 whiskers , 2001 .

[119]  J. Teubner,et al.  High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. , 2001, Physical review letters.

[120]  T. Hirai,et al.  Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich Ce_yFe_xCo_4−xSb_12 , 2001 .

[121]  M. Kanatzidis,et al.  Modular construction of A1+xM4-2xM'7+xSe15 (A = K, Rb; M = Pb, Sn; M' = Bi, Sb) : A new class of solid state quaternary thermoelectric compounds , 2001 .

[122]  M. Kanatzidis,et al.  Electronic Structure of K2Bi8Se13 , 2001 .

[123]  M. Kanatzidis Chapter 3 The role of solid-state chemistry in the discovery of new thermoelectric materials , 2001 .

[124]  Ctirad Uher,et al.  Chapter 5 Skutterudites: Prospective novel thermoelectrics , 2001 .

[125]  G. Chen,et al.  Chapter 5 - Phonon Transport in Low-Dimensional Structures , 2001 .

[126]  G. Poon Chapter 2 Electronic and thermoelectric properties of Half-Heusler alloys , 2001 .

[127]  I. Terasaki,et al.  Thermoelectric Properties of Bi2.3-xPbxSr2.6Co2Oy Single Crystals , 2000 .

[128]  Tsunehiro Takeuchi,et al.  An Oxide Single Crystal with High Thermoelectric Performance in Air , 2000 .

[129]  S. Poon,et al.  Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1−xSbx , 2000 .

[130]  S. Maekawa,et al.  Thermopower in cobalt oxides , 2000 .

[131]  George S. Nolas,et al.  High figure of merit in partially filled ytterbium skutterudite materials , 2000 .

[132]  Song,et al.  Yb14ZnSb11: charge balance in zintl compounds as a route to intermediate Yb valence , 2000, Physical review letters.

[133]  S. Poon,et al.  Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases , 2000 .

[134]  O. Yamashita,et al.  Thermoelectric properties of Si1−xGex(x⩽0.10) with alloy and dopant segregations , 2000 .

[135]  Lykourgos Iordanidis and,et al.  Redox-Induced “Zipper” Action in Rb2Bi4Se7 and Cs2Bi4Se7: Coupling of Slabs to a Three-Dimensional Framework through Single-Crystal to Single-Crystal Conversion , 2000 .

[136]  M. Kanatzidis,et al.  Redox‐Induced “Zipper” Action in Rb2Bi4Se7 and Cs2Bi4Se7: Coupling of Slabs to a Three‐Dimensional Framework through Single‐Crystal to Single‐Crystal Conversion , 2000 .

[137]  D. Rowe,et al.  Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds , 2000 .

[138]  O. Sankey,et al.  Chemical trends of the rattling phonon modes in alloyed germanium clathrates , 2000 .

[139]  F. Disalvo,et al.  Synthesis and characterization of Ba3Bi6.67Se13 and its filled variants Ba3Bi6PbSe13 and Ba3Bi6SnSe13 , 2000 .

[140]  S. D. Mahanti,et al.  Electronic structure and transport of Bi 2 Te 3 and BaBiTe 3 , 2000 .

[141]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[142]  M. Kanatzidis,et al.  Structure and thermoelectric properties of the new quaternary tin selenide K1 −xSn5 −xBi11 + xSe22 , 2000 .

[143]  B. Sales,et al.  Atomic Displacement Parameters and the Lattice Thermal Conductivity of Clathrate-like Thermoelectric Compounds , 1999 .

[144]  D. Rowe,et al.  Preparation and thermoelectric properties of A/sub 8//sup II/B/sub 16//sup III/B/sub 30//sup IV/ clathrate compounds , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[145]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[146]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[147]  M. Kanatzidis,et al.  Electronic structure of rare-earth nickel pnictides: Narrow-gap thermoelectric materials , 1999 .

[148]  Bryan C. Chakoumakos,et al.  Thermoelectric properties of Tl2SnTe5 and Tl2GeTe5 , 1999 .

[149]  J. Jumas,et al.  X-ray Diffraction and (119)Sn Mössbauer Spectroscopy Study of a New Phase in the Bi(2)Se(3)-SnSe System: SnBi(4)Se(7). , 1999, Inorganic chemistry.

[150]  M. Kanatzidis,et al.  First quaternary A-Pb-Bi-Q (A = K, Rb, Cs; Q = S, Se) compounds: Synthesis, structure, and properties of α-and β-CsPbBi3Se6, APbBi3Se6, (A = K, Rb), and APbBi3S6 (A = Rb, Cs) , 1999 .

[151]  Donald T. Morelli,et al.  Transport properties of pure and doped M NiSn ( M =Zr, Hf) , 1999 .

[152]  M. Kanatzidis,et al.  ALn1±xBi4±xS8(A=K,Rb;Ln=La,Ce,Pr,Nd): New Semiconducting Quaternary Bismuth Sulfides , 1999 .

[153]  C. Goldmann,et al.  Efficient dopants for ZrNiSn-based thermoelectric materials , 1999 .

[154]  David Michael Rowe,et al.  Thermoelectrics, an environmentally-friendly source of electrical power , 1999 .

[155]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[156]  M. A. Kouacou,et al.  Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration , 1998 .

[157]  B. Sales Electron Crystals and Phonon Glasses: A New Path to Improved Thermoelectric Materials , 1998 .

[158]  M. Kanatzidis,et al.  Synthesis and thermoelectric properties of Cs2Bi7.33Se12, A2Bi8Se13 (A = Rb, Cs), Ba4×xBi6+2/3xSe13, and Ba3±xPb3±xBi6Se15 , 1998 .

[159]  M. Kanatzidis,et al.  Solid State Chemistry Approach to Advanced Thermoelectrics. Ternary and Quaternary Alkali Metal Bismuth Chalcogenides as Thermoelectric Materials , 1998 .

[160]  M. Kanatzidis,et al.  Observed properties and electronic structure of RNiSb compounds (R = Ho, Er, Tm, Yb and Y). Potential thermoelectric materials , 1998 .

[161]  J. Jumas,et al.  Structure and temperature transformation of SnSe. Stabilization of a new cubic phase Sn4Bi2Se7 , 1998 .

[162]  M. Kanatzidis,et al.  High Thermopower and Low Thermal Conductivity in Semiconducting Ternary K−Bi−Se Compounds. Synthesis and Properties of β-K2Bi8Se13 and K2.5Bi8.5Se14 and Their Sb Analogues , 1997 .

[163]  B. Sales,et al.  FILLED SKUTTERUDITE ANTIMONIDES : ELECTRON CRYSTALS AND PHONON GLASSES , 1997 .

[164]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[165]  C. Uher,et al.  CERIUM FILLING AND DOPING OF COBALT TRIANTIMONIDE , 1997 .

[166]  Stephen J. Lee,et al.  Synthesis and Structure of New Cd−Bi−S Homologous Series: A Study in Intergrowth and the Control of Twinning Patterns , 1997 .

[167]  M. Kanatzidis,et al.  KTHSB2SE6 AND BALABI2Q6 (Q = S, SE) ADOPT A NEW STRUCTURE TYPE STABILIZED WITH DICHALCOGENIDE GROUPS , 1997 .

[168]  M. Kanatzidis,et al.  Transport Properties of Bi2S3 and the Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13 , 1997 .

[169]  Jean-Pierre Fleurial,et al.  Preparation and thermoelectric properties of semiconducting Zn4Sb3 , 1997 .

[170]  M. Kanatzidis,et al.  Oligomerization Versus Polymerization of Texn- in the Polytelluride Compound BaBiTe3. Structural Characterization, Electronic Structure, and Thermoelectric Properties , 1997 .

[171]  Brian C. Sales,et al.  Thermoelectric Materials: New Approaches to an Old Problem , 1997 .

[172]  M. Kanatzidis,et al.  Searching for new thermoelectrics in chemically and structurally complex bismuth chalcogenides , 1997 .

[173]  Koichi Eguchi,et al.  Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion , 1997 .

[174]  M. Kanatzidis,et al.  Synthesis and Thermoelectric Properties of the New Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13 , 1996 .

[175]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[176]  Koichi Eguchi,et al.  High‐temperature thermoelectric properties of (Zn1−xAlx)O , 1996 .

[177]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[178]  Rabe,et al.  Band gap and stability in the ternary intermetallic compounds NiSnM (M=Ti,Zr,Hf): A first-principles study. , 1994, Physical review. B, Condensed matter.

[179]  M. Kanatzidis,et al.  Ternary Bismuth Chalcogenides for Thermoelectric Applications. Synthesis and Charge Transport Properties of New Compounds in the K-BI-S System. , 1995 .

[180]  M. Kanatzidis,et al.  A New Metastable Three-Dimensional Bismuth Sulfide with Large Tunnels: Synthesis, Structural Characterization, Ion-Exchange Properties, and Reactivity of KBi3S5 , 1995 .

[181]  G. A. Slack,et al.  Some properties of semiconducting IrSb3 , 1994 .

[182]  K. Eguchi,et al.  High-temperature thermoelectric properties of In2O3-based mixed oxides and their applicability to thermoelectric power generation , 1994 .

[183]  R. Pohl,et al.  Experimental determinations of the Lorenz number , 1993 .

[184]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[185]  M. Kanatzidis,et al.  Molten Salt Synthesis and Properties of Three New Solid-State Ternary Bismuth Chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13 , 1993 .

[186]  G. Brun,et al.  A new phase in the TiAgTe system: crystal structure of Tl2Ag16Te11 , 1992 .

[187]  L. E. Shelimova,et al.  Thermoelectric Figure of Merit of Some Compositions in the System (GeTe)1−x[(Ag2Te)1−y(Sb2Te3)y]x , 1991 .

[188]  F. Aliev,et al.  Gap at the Fermi level in the intermetallic vacancy system RBiSn(R=Ti,Zr,Hf) , 1989 .

[189]  C Wood,et al.  Materials for thermoelectric energy conversion , 1988 .

[190]  S. K. Placheova Thermoelectric figure of merit of the system (GeTe)1−x(AgSbTe2)x , 1984 .

[191]  C. Wood High-temperature thermoelectric energy conversion. II - Materials survey , 1984 .

[192]  W. Jeitschko,et al.  Thorium-containing pnictides with the LaFe4P12 structure , 1980 .

[193]  W. Jeitschko,et al.  Preparation and structural investigations of antimonides with the LaFe4P12 structure , 1980 .

[194]  W. Jeitschko,et al.  Ternary arsenides with LaFe4P12-type structure , 1980 .

[195]  D. Rowe,et al.  Boundary scattering of phonons , 1978 .

[196]  K. Schubert,et al.  Über einige phasen der Mischungen ZnSbN und CdSbN , 1978 .

[197]  W. Jeitschko,et al.  LaFe4P12 with filled CoAs3‐type structure and isotypic lanthanoid–transition metal polyphosphides , 1977 .

[198]  J. Verhoeven Fundamentals of Physical Metallurgy , 1975 .

[199]  T. Irie Thermoelectric Properties of the Single-Phase of AgSbTe2 , 1962 .

[200]  T. Ishihara Lattice Thermal Conductivity in AgSbTe2–SnTe as Deduced from the Calculation of Electronic Thermal Conductivity , 1962 .

[201]  R. Wolfe,et al.  Anomalous Hall Effect in AgSbTe2 , 1960 .

[202]  F. D. Rosi,et al.  Semiconductor materials for thermoelectric power generation up to 700 C , 1960, Electrical Engineering.

[203]  R. Keyes High-Temperature Thermal Conductivity of Insulating Crystals: Relationship to the Melting Point , 1959 .

[204]  J. Wernick,et al.  Ternary semiconducting compounds with sodium chloride‐like structure: AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2 , 1959 .

[205]  J. Wernick,et al.  Constitution of the AgSbSe2-AgSbTe2−AgBiSe2−AgBiTe2 system , 1958 .

[206]  D. A. Wright Thermoelectric Properties of Bismuth Telluride and its Alloys , 1958, Nature.

[207]  C. Kittel Introduction to solid state physics , 1954 .

[208]  N. Mott,et al.  The Theory of the Properties of Metals and Alloys , 1933 .