Prediction of Effective Properties of Porous Carbon Electrodes from a Parametric 3D Random Morphological Model
暂无分享,去创建一个
D. Jeulin | F. Willot | J. Balach | T. Prill | F. Soldera
[1] E. Kjeang,et al. A customized framework for 3-D morphological characterization of microporous layers , 2013 .
[2] F. Willot,et al. Fourier‐based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields , 2013, 1307.1015.
[3] D Jeulin,et al. Morphological segmentation of FIB‐SEM data of highly porous media , 2013, Journal of microscopy.
[4] C. Barbero,et al. A Direct and Quantitative Three-Dimensional Reconstruction of the Internal Structure of Disordered Mesoporous Carbon with Tailored Pore Size , 2013, Microscopy and Microanalysis.
[5] Roland Zengerle,et al. How Coarsening the 3D Reconstruction of a Porous Material Influences Diffusivity and Conductivity Values , 2012 .
[6] I. Manke,et al. A two-stage approach to the segmentation of FIB-SEM images of highly porous materials , 2012 .
[7] C. Barbero,et al. A direct and quantitative image of the internal nanostructure of nonordered porous monolithic carbon using FIB nanotomography , 2012, Journal of microscopy.
[8] Laurent Pilon,et al. Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances , 2011 .
[9] K. V. Hansen,et al. A framework for automatic segmentation in three dimensions of microstructural tomography data. , 2010, Ultramicroscopy.
[10] E. Barsoukov,et al. Impedance spectroscopy : theory, experiment, and applications , 2005 .
[11] Alexei Heintz,et al. A Convolution-Thresholding Approximation of Generalized Curvature Flows , 2004, SIAM J. Numer. Anal..
[12] M. Bazant,et al. Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] D. Jeulin,et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .
[14] Dominique Jeulin,et al. Random texture models for material structures , 2000, Stat. Comput..
[15] B. Conway. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .
[16] Graeme W. Milton,et al. A fast numerical scheme for computing the response of composites using grid refinement , 1999 .
[17] G. Paasch,et al. The influence of porosity and the nature of the charge storage capacitance on the impedance behaviour of electropolymerized polyaniline films , 1998 .
[18] K. Micka,et al. Theory of the electrochemical impedance of macrohomogeneous porous electrodes , 1993 .
[19] J. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .
[20] Graeme W. Milton,et al. Bounds on the elastic and transport properties of two-component composites , 1982 .
[21] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory , 1980 .
[22] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[23] M. Beran. Use of the vibrational approach to determine bounds for the effective permittivity in random media , 1965 .
[24] R. D. Levie,et al. On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .
[25] Larry Wasserman,et al. TO PROBABILITY AND MATHEMATICAL STATISTICS , 2017 .
[26] Dominique Jeulin,et al. Random Structures in Physics , 2005 .
[27] H. Eom. Green’s Functions: Applications , 2004 .
[28] Salvatore Torquato,et al. Bounds on the effective thermal conductivity of a dispersion of fully penetrable spheres , 1985 .
[29] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[30] G. Matheron. Éléments pour une théorie des milieux poreux , 1967 .