Prediction of Effective Properties of Porous Carbon Electrodes from a Parametric 3D Random Morphological Model

[1]  E. Kjeang,et al.  A customized framework for 3-D morphological characterization of microporous layers , 2013 .

[2]  F. Willot,et al.  Fourier‐based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields , 2013, 1307.1015.

[3]  D Jeulin,et al.  Morphological segmentation of FIB‐SEM data of highly porous media , 2013, Journal of microscopy.

[4]  C. Barbero,et al.  A Direct and Quantitative Three-Dimensional Reconstruction of the Internal Structure of Disordered Mesoporous Carbon with Tailored Pore Size , 2013, Microscopy and Microanalysis.

[5]  Roland Zengerle,et al.  How Coarsening the 3D Reconstruction of a Porous Material Influences Diffusivity and Conductivity Values , 2012 .

[6]  I. Manke,et al.  A two-stage approach to the segmentation of FIB-SEM images of highly porous materials , 2012 .

[7]  C. Barbero,et al.  A direct and quantitative image of the internal nanostructure of nonordered porous monolithic carbon using FIB nanotomography , 2012, Journal of microscopy.

[8]  Laurent Pilon,et al.  Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances , 2011 .

[9]  K. V. Hansen,et al.  A framework for automatic segmentation in three dimensions of microstructural tomography data. , 2010, Ultramicroscopy.

[10]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[11]  Alexei Heintz,et al.  A Convolution-Thresholding Approximation of Generalized Curvature Flows , 2004, SIAM J. Numer. Anal..

[12]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[14]  Dominique Jeulin,et al.  Random texture models for material structures , 2000, Stat. Comput..

[15]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[16]  Graeme W. Milton,et al.  A fast numerical scheme for computing the response of composites using grid refinement , 1999 .

[17]  G. Paasch,et al.  The influence of porosity and the nature of the charge storage capacitance on the impedance behaviour of electropolymerized polyaniline films , 1998 .

[18]  K. Micka,et al.  Theory of the electrochemical impedance of macrohomogeneous porous electrodes , 1993 .

[19]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[20]  Graeme W. Milton,et al.  Bounds on the elastic and transport properties of two-component composites , 1982 .

[21]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[22]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[23]  M. Beran Use of the vibrational approach to determine bounds for the effective permittivity in random media , 1965 .

[24]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .

[25]  Larry Wasserman,et al.  TO PROBABILITY AND MATHEMATICAL STATISTICS , 2017 .

[26]  Dominique Jeulin,et al.  Random Structures in Physics , 2005 .

[27]  H. Eom Green’s Functions: Applications , 2004 .

[28]  Salvatore Torquato,et al.  Bounds on the effective thermal conductivity of a dispersion of fully penetrable spheres , 1985 .

[29]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[30]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .