Capturing Acceleration in Monotone Inclusion: A Closed-Loop Control Perspective

We propose and analyze a new dynamical system with a closed-loop control law in a Hilbert space H, aiming to shed light on the acceleration phenomenon for monotone inclusion problems, which unifies a broad class of optimization, saddle point and variational inequality (VI) problems under a single framework. Given an operator A : H ⇒ H that is maximal monotone, we study a closed-loop control system that is governed by the operator I − (I + λ(t)A) where a feedback law λ(·) is tuned by the resolution of the algebraic equation λ(t)‖(I + λ(t)A)x(t) − x(t)‖p−1 = θ for some θ ∈ (0, 1). Our first contribution in this paper is to prove the existence and uniqueness of a global solution via the Cauchy-Lipschitz theorem. We present a simple Lyapunov function that allows for establishing the weak convergence of trajectories via the Opial lemma and strong convergence results under additional conditions. We establish a global ergodic convergence rate of O(t) in terms of a gap function and a global pointwise convergence rate of O(t) in terms of a residue function. Local linear convergence is established in terms of a distance function under an error bound condition. Our second contribution is to provide an algorithmic framework based on the implicit discretization of our closed-loop control system in a Euclidean setting, generalizing the large-step HPE framework of Monteiro and Svaiter [2012]. Even though the discrete-time analysis is a simplification and generalization of the analysis in Monteiro and Svaiter [2012] for bounded domain, it is motivated by the aforementioned continuous-time analysis, illustrating the fundamental role that the closed-loop control plays in acceleration in monotone inclusion. A highlight of our analysis is collection of new results concerning p-th order tensor algorithms for monotone inclusion problems, which complement the recent analysis in Bullins and Lai [2020] for saddle point and VI problems.

[1]  H. Attouch,et al.  First-order inertial algorithms involving dry friction damping , 2021, Mathematical programming.

[2]  Guanghui Lan,et al.  Simple and optimal methods for stochastic variational inequalities, I: operator extrapolation , 2020, SIAM J. Optim..

[3]  H. Attouch,et al.  Fast optimization via inertial dynamics with closed-loop damping , 2020, Journal of the European Mathematical Society.

[4]  Zaki Chbani,et al.  First-order optimization algorithms via inertial systems with Hessian driven damping , 2019, Mathematical Programming.

[5]  Chaobing Song,et al.  Unified Acceleration of High-Order Algorithms under General Hölder Continuity , 2021, SIAM J. Optim..

[6]  H. Attouch,et al.  Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling , 2020, Evolution Equations & Control Theory.

[7]  Michael I. Jordan,et al.  Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic Perspectives , 2020, J. Mach. Learn. Res..

[8]  Michael I. Jordan,et al.  A control-theoretic perspective on optimal high-order optimization , 2019, Mathematical Programming.

[9]  Yurii Nesterov,et al.  Implementable tensor methods in unconstrained convex optimization , 2019, Mathematical Programming.

[10]  Michael I. Jordan,et al.  Generalized Momentum-Based Methods: A Hamiltonian Perspective , 2019, SIAM J. Optim..

[11]  Donghwan Kim,et al.  Accelerated proximal point method for maximally monotone operators , 2019, Mathematical Programming.

[12]  Michael I. Jordan,et al.  Understanding the acceleration phenomenon via high-resolution differential equations , 2018, Mathematical Programming.

[13]  Yangyang Xu,et al.  Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems , 2018, Math. Program..

[14]  Michael I. Jordan,et al.  A Lyapunov Analysis of Accelerated Methods in Optimization , 2021, J. Mach. Learn. Res..

[15]  Noah Golowich,et al.  Tight last-iterate convergence rates for no-regret learning in multi-player games , 2020, NeurIPS.

[16]  Samir Adly,et al.  Finite Convergence of Proximal-Gradient Inertial Algorithms Combining Dry Friction with Hessian-Driven Damping , 2020, SIAM J. Optim..

[17]  Kevin A. Lai,et al.  Higher-order methods for convex-concave min-max optimization and monotone variational inequalities , 2020, SIAM J. Optim..

[18]  H. Attouch,et al.  Continuous Newton-like Inertial Dynamics for Monotone Inclusions , 2020, Set-Valued and Variational Analysis.

[19]  Michael I. Jordan,et al.  On dissipative symplectic integration with applications to gradient-based optimization , 2020, Journal of Statistical Mechanics: Theory and Experiment.

[20]  Jelena Diakonikolas Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion and Strong Solutions to Variational Inequalities , 2020, COLT.

[21]  Noah Golowich,et al.  Last Iterate is Slower than Averaged Iterate in Smooth Convex-Concave Saddle Point Problems , 2020, COLT.

[22]  Hedy Attouch,et al.  Newton-like Inertial Dynamics and Proximal Algorithms Governed by Maximally Monotone Operators , 2020, SIAM J. Optim..

[23]  Hedy Attouch,et al.  Convergence of a relaxed inertial proximal algorithm for maximally monotone operators , 2019, Mathematical Programming.

[24]  Jean-François Aujol,et al.  Convergence rate of inertial Forward–Backward algorithm beyond Nesterov’s rule , 2018, Mathematical Programming.

[25]  H. Attouch,et al.  Fast convex optimization via time scaling of damped inertial gradient dynamics , 2020 .

[26]  Hedy Attouch,et al.  Fast Proximal Methods via Time Scaling of Damped Inertial Dynamics , 2019, SIAM J. Optim..

[27]  Michael I. Jordan,et al.  A Dynamical Systems Perspective on Nesterov Acceleration , 2019, ICML.

[28]  Eduard A. Gorbunov,et al.  Optimal Tensor Methods in Smooth Convex and Uniformly ConvexOptimization , 2019, COLT.

[29]  Yin Tat Lee,et al.  Near-optimal method for highly smooth convex optimization , 2018, COLT.

[30]  Shuzhong Zhang,et al.  An Optimal High-Order Tensor Method for Convex Optimization , 2019, COLT.

[31]  Jelena Diakonikolas,et al.  The Approximate Duality Gap Technique: A Unified Theory of First-Order Methods , 2017, SIAM J. Optim..

[32]  Juan Peypouquet,et al.  Convergence of inertial dynamics and proximal algorithms governed by maximally monotone operators , 2017, Mathematical Programming.

[33]  H. Attouch,et al.  Convergence of damped inertial dynamics governed by regularized maximally monotone operators , 2018, Journal of Differential Equations.

[34]  Juan Peypouquet,et al.  Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity , 2018, Math. Program..

[35]  Dmitriy Drusvyatskiy,et al.  Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods , 2016, Math. Oper. Res..

[36]  Hedy Attouch,et al.  Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity , 2017 .

[37]  John C. Duchi,et al.  Certifiable Distributional Robustness with Principled Adversarial Training , 2017, ArXiv.

[38]  Jonathan M. Borwein,et al.  Maximal Monotone Inclusions and Fitzpatrick Functions , 2016, J. Optim. Theory Appl..

[39]  Andre Wibisono,et al.  A variational perspective on accelerated methods in optimization , 2016, Proceedings of the National Academy of Sciences.

[40]  H. Attouch,et al.  Fast convex optimization via inertial dynamics with Hessian driven damping , 2016, Journal of Differential Equations.

[41]  Hedy Attouch,et al.  The Rate of Convergence of Nesterov's Accelerated Forward-Backward Method is Actually Faster Than 1/k2 , 2015, SIAM J. Optim..

[42]  Radu Ioan Bot,et al.  Second Order Forward-Backward Dynamical Systems For Monotone Inclusion Problems , 2015, SIAM J. Control. Optim..

[43]  Stephen P. Boyd,et al.  A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights , 2014, J. Mach. Learn. Res..

[44]  Franziska Abend,et al.  Facility Location Concepts Models Algorithms And Case Studies , 2016 .

[45]  Kristian Kirsch,et al.  Theory Of Ordinary Differential Equations , 2016 .

[46]  B. Svaiter,et al.  A dynamic approach to a proximal-Newton method for monotone inclusions in Hilbert spaces, with complexity O(1/n^2) , 2015, 1502.04286.

[47]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[48]  Benar Fux Svaiter,et al.  Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces , 2014, J. Optim. Theory Appl..

[49]  Bruce Bueno de Mesquita,et al.  An Introduction to Game Theory , 2014 .

[50]  Renato D. C. Monteiro,et al.  An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and Its Implications to Second-Order Methods , 2013, SIAM J. Optim..

[51]  Benar Fux Svaiter,et al.  Global Convergence of a Closed-Loop Regularized Newton Method for Solving Monotone Inclusions in Hilbert Spaces , 2013, J. Optim. Theory Appl..

[52]  Paul-Emile Maingé First-Order Continuous Newton-like Systems for Monotone Inclusions , 2013, SIAM J. Control. Optim..

[53]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.

[54]  Renato D. C. Monteiro,et al.  Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems , 2012, SIAM J. Optim..

[55]  H. Attouch,et al.  A second-order differential system with hessian-driven damping; application to non-elastic shock laws , 2012 .

[56]  Renato D. C. Monteiro,et al.  Complexity of Variants of Tseng's Modified F-B Splitting and Korpelevich's Methods for Hemivariational Inequalities with Applications to Saddle-point and Convex Optimization Problems , 2011, SIAM J. Optim..

[57]  Benar Fux Svaiter,et al.  A Continuous Dynamical Newton-Like Approach to Solving Monotone Inclusions , 2011, SIAM J. Control. Optim..

[58]  Renato D. C. Monteiro,et al.  On the Complexity of the Hybrid Proximal Extragradient Method for the Iterates and the Ergodic Mean , 2010, SIAM J. Optim..

[59]  H. Attouch,et al.  ASYMPTOTIC BEHAVIOR OF SECOND-ORDER DISSIPATIVE EVOLUTION EQUATIONS COMBINING POTENTIAL WITH NON-POTENTIAL EFFECTS ∗ , 2009, 0905.0092.

[60]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[61]  Yurii Nesterov,et al.  Dual extrapolation and its applications to solving variational inequalities and related problems , 2003, Math. Program..

[62]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[63]  A DYNAMICAL SYSTEM ASSOCIATED WITH NEWTON ’ S METHOD FOR PARAMETRIC APPROXIMATIONS OF CONVEX MINIMIZATION PROBLEMS , 2004 .

[64]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[65]  A. Polyanin,et al.  Handbook of Nonlinear Partial Differential Equations , 2003 .

[66]  Mikhail V. Solodov Convergence rate analysis of iteractive algorithms for solving variational inequality problems , 2003, Math. Program..

[67]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[68]  Tamal Bose,et al.  Digital Signal and Image Processing , 2003 .

[69]  J. Bolte,et al.  A second-order gradient-like dissipative dynamical system with Hessian-driven damping.: Application to optimization and mechanics , 2002 .

[70]  Heinz H. Bauschke,et al.  A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces , 2001, Math. Oper. Res..

[71]  H. Attouch,et al.  An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping , 2001 .

[72]  H. Attouch,et al.  The Second-order in Time Continuous Newton Method , 2001 .

[73]  Marios M. Polycarpou,et al.  Cooperative Control of Distributed Multi-Agent Systems , 2001 .

[74]  Felipe Alvarez,et al.  On the Minimizing Property of a Second Order Dissipative System in Hilbert Spaces , 2000, SIAM J. Control. Optim..

[75]  H. Attouch,et al.  THE HEAVY BALL WITH FRICTION METHOD, I. THE CONTINUOUS DYNAMICAL SYSTEM: GLOBAL EXPLORATION OF THE LOCAL MINIMA OF A REAL-VALUED FUNCTION BY ASYMPTOTIC ANALYSIS OF A DISSIPATIVE DYNAMICAL SYSTEM , 2000 .

[76]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[77]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[78]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[79]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[80]  B. Lemaire An asymptotical variational principle associated with the steepest descent method for a convex function. , 1996 .

[81]  P. Tseng On linear convergence of iterative methods for the variational inequality problem , 1995 .

[82]  Osman Güler,et al.  New Proximal Point Algorithms for Convex Minimization , 1992, SIAM J. Optim..

[83]  Masao Fukushima,et al.  Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems , 1992, Math. Program..

[84]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[85]  W. A. Kirk,et al.  Topics in Metric Fixed Point Theory , 1990 .

[86]  S. Fitzpatrick Representing monotone operators by convex functions , 1988 .

[87]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[88]  S. M. Robinson Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity , 1987 .

[89]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[90]  J. Baillon,et al.  Un exemple concernant le comportement asymptotique de la solution du problème dudt + ∂ϑ(μ) ∋ 0 , 1978 .

[91]  P. Lions,et al.  Une methode iterative de resolution d’une inequation variationnelle , 1978 .

[92]  H. Brezis Asymptotic Behavior of Some Evolution Systems , 1978 .

[93]  Ronald E. Bruck On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space , 1977 .

[94]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[95]  Ronald E. Bruck Asymptotic convergence of nonlinear contraction semigroups in Hilbert space , 1975 .

[96]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[97]  S. Karamardian,et al.  The complementarity problem , 1972, Math. Program..

[98]  R. Rockafellar,et al.  On the maximal monotonicity of subdifferential mappings. , 1970 .

[99]  B. Martinet,et al.  R'egularisation d''in'equations variationnelles par approximations successives , 1970 .

[100]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[101]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[102]  R. Bellman The stability of solutions of linear differential equations , 1943 .

[103]  T. H. Gronwall Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations , 1919 .