Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth.

Supramolecular assembly can be used to construct a wide variety of ordered structures by exploiting the cumulative effects of multiple noncovalent interactions. However, the construction of anisotropic nanostructures remains subject to some limitations. Here, we demonstrate the preparation of anisotropic fullerene-based nanostructures by supramolecular differentiation, which is the programmed control of multiple assembly strategies. We have carefully combined interfacial assembly and local phase separation phenomena. Two fullerene derivatives, PhH and C12H, were together formed into self-assembled anisotropic nanostructures by using this approach. This technique is applicable for the construction of anisotropic nanostructures without requiring complex molecular design or complicated methodology.

[1]  Katsuhiko Ariga,et al.  Solvent engineering for shape-shifter pure fullerene (C60). , 2009, Journal of the American Chemical Society.

[2]  C. Burger,et al.  Spherical bilayer vesicles of fullerene-based surfactants in water: a laser light scattering study. , 2001, Science.

[3]  Protein-coated nanocapsules via multilevel surface modification. Controlled preparation and microscopic analysis at nanometer resolution. , 2013, Chemical communications.

[4]  Xuan Zhang,et al.  Flowerlike supramolecular architectures assembled from C60 equipped with a pyridine substituent. , 2010, Chemical communications.

[5]  E. Nakamura,et al.  Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. , 2003, Accounts of chemical research.

[6]  E. Nakamura,et al.  DNA Binding of Pentaamino[60]fullerene Synthesized Using Click Chemistry , 2015 .

[7]  Katsuhiko Ariga,et al.  Fullerene Nanoarchitectonics: From Zero to Higher Dimensions , 2013 .

[8]  Yoshihisa Hagihara,et al.  Carbon nanotube–liposome supramolecular nanotrains for intelligent molecular-transport systems , 2012, Nature Communications.

[9]  M. Prato,et al.  Supramolecular self-assembled fullerene nanostructures , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Rodney S. Ruoff,et al.  Solubility of fullerene (C60) in a variety of solvents , 1993 .

[11]  D. Guillon,et al.  9. [60]Fullerene-Containing Thermotropic Liquid Crystals , 2012 .

[12]  Xi Zhang,et al.  Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. , 2012, Accounts of chemical research.

[13]  Katsuhiko Ariga,et al.  Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains. , 2007, Small.

[14]  Deqing Zhang,et al.  Self-assembly of a new C60 compound with a L-glutamid-derived lipid unit: formation of organogels and hierarchically structured spherical particles , 2011 .

[15]  E. Nakamura,et al.  Nanometer-sized fluorous fullerene vesicles in water and on solid surfaces. , 2010, Angewandte Chemie.

[16]  E. Nakamura,et al.  siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene , 2014, Scientific Reports.

[17]  H. Möhwald,et al.  Directed assembly of optoelectronically active alkyl-π-conjugated molecules by adding n-alkanes or π-conjugated species. , 2014, Nature chemistry.

[18]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[19]  Kiyoshi Kanie,et al.  Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals , 2002, Nature.

[20]  D. Werz,et al.  Synthesis of fullerene glycoconjugates via a copper-catalyzed Huisgen cycloaddition reaction. , 2007, Organic letters.

[21]  E. Nakamura,et al.  Preparation and properties of vesicles made of nonpolar/polar/nonpolar fullerene amphiphiles. , 2011, Journal of the American Chemical Society.

[22]  N. Martín,et al.  Supramolecular chemistry of fullerenes and carbon nanotubes , 2012 .

[23]  T. Aida,et al.  Chiroselective assembly of a chiral porphyrin-fullerene dyad: photoconductive nanofiber with a top-class ambipolar charge-carrier mobility. , 2010, Journal of the American Chemical Society.

[24]  A. Narita,et al.  Photocrosslinking of the Exterior of a Fullerene Bilayer that Prevents Vesicle Aggregation , 2014 .

[25]  Ayyappanpillai Ajayaghosh,et al.  Living supramolecular polymerization , 2015, Science.

[26]  K. Kono,et al.  In Vivo Remote Control of Reactions in Caenorhabditis elegans by Using Supramolecular Nanohybrids of Carbon Nanotubes and Liposomes. , 2015, Angewandte Chemie.

[27]  Bibhuti Bhusan Rath,et al.  C60 -mediated molecular shape sorting: separation and purification of geometrical isomers. , 2014, Angewandte Chemie.

[28]  T. Fukushima,et al.  Amphiphilic molecular design as a rational strategy for tailoring bicontinuous electron donor and acceptor arrays: photoconductive liquid crystalline oligothiophene--C60 dyads. , 2008, Journal of the American Chemical Society.

[29]  Katsuhiko Ariga,et al.  Hierarchically Structured Fullerene C70 Cube for Sensing Volatile Aromatic Solvent Vapors. , 2016, ACS nano.

[30]  SawamuraMasaya,et al.  Pentaorgano[60]fullerene R5C60−. A Water Soluble Hydrocarbon Anion , 2000 .

[31]  H. Möhwald,et al.  Fullerene derivatives that bear aliphatic chains as unusual surfactants: hierarchical self-organization, diverse morphologies, and functions. , 2010, Chemistry.

[32]  L. Sánchez,et al.  Liquid-crystalline hybrid materials based on [60]fullerene and bent-core structures. , 2011, Angewandte Chemie.

[33]  Kenji Kono,et al.  Magnetically and Near-Infrared Light-Powered Supramolecular Nanotransporters for the Remote Control of Enzymatic Reactions. , 2016, Angewandte Chemie.

[34]  B. Schade,et al.  Switchable supramolecular organization of structurally defined micelles based on an amphiphilic fullerene. , 2005, Angewandte Chemie.

[35]  Katsuhiko Ariga,et al.  Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. , 2013, Journal of the American Chemical Society.

[36]  Kun'ichi Miyazawa,et al.  C_60 Nanowhiskers Formed by the Liquid–liquid Interfacial Precipitation Method , 2002 .

[37]  H. Okayama,et al.  Gene delivery by aminofullerenes: structural requirements for efficient transfection. , 2006, Chemistry, an Asian journal.

[38]  T. Nakanishi Supramolecular Soft and Hard Materials Based on Self-Assembly Algorithms of Alkyl-Conjugated Fullerenes , 2010 .

[39]  T. Sugaya,et al.  In vivo gene delivery by cationic tetraamino fullerene , 2010, Proceedings of the National Academy of Sciences.

[40]  K. Ariga,et al.  Nanoarchitectonics for carbon-material-based sensors. , 2016, The Analyst.

[41]  E. Nakamura,et al.  Synthesis and structural, electrochemical, and stacking properties of conical molecules possessing buckyferrocene on the apex. , 2006, Journal of the American Chemical Society.

[42]  D. Zhao,et al.  Ordered mesoporous materials based on interfacial assembly and engineering. , 2013, Advanced materials.

[43]  E. Nakamura,et al.  Energetics of water permeation through fullerene membrane , 2007, Proceedings of the National Academy of Sciences.

[44]  K. Ariga,et al.  Hierarchical supramolecular fullerene architectures with controlled dimensionality. , 2005, Chemical communications.

[45]  Joanna Aizenberg,et al.  Rationally Designed Complex, Hierarchical Microarchitectures , 2013, Science.

[46]  E. Nakamura,et al.  Lamellar assembly of conical molecules possessing a fullerene apex in crystals and liquid crystals. , 2007, Journal of the American Chemical Society.