A finite-element method for computing nonlinear force-free fields

The aim of this paper is to propose a new method for computing nonlinear force-free fields. The method is based on an iterative algorithm and a finite-element discretization. After analysing the error for one step, we display some numerical tests which confirm the performance of the code and reveal the superconvergence of the algorithm. A straightforward and potential application of the method is the reconstruction of the coronal magnetic field on the sun from measurements.

[1]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[2]  M. Bineau On the existence of force-free magnetic fields , 1972 .

[3]  T. Sakurai Computational modeling of magnetic fields in solar active regions , 1989 .

[4]  Yoshikazu Giga,et al.  Remarks on spectra of operator rot , 1990 .

[5]  M. Berger,et al.  The topological properties of magnetic helicity , 1984, Journal of Fluid Mechanics.

[6]  R. Kress The treatment of a Neumann boundary value problem for force-free fields by an integral equation method , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[8]  T. Amari,et al.  An iterative method for the reconstructionbreak of the solar coronal magnetic field. I. Method for regular solutions , 1999 .

[9]  Ahmed E. Radwan Stability of a force-free magnetic field of a conducting fluid cylinder , 1997 .

[10]  I. Benn,et al.  Force-free fields from Hertz potentials , 1996 .

[11]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[12]  Mixed finite element approximation of the vector potential , 1987 .

[13]  Marco Avellaneda,et al.  On Woltjer’s variational principle for force‐free fields , 1991 .

[14]  V. Arnold,et al.  Sur la topologie des écoulements stationnaires des fluides parfaits , 1965 .

[15]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[16]  D. Evelyne Thèse de doctorat d'Etat , 1988 .

[17]  Zoran Mikic,et al.  RECONSTRUCTING THE SOLAR CORONAL MAGNETIC FIELD AS A FORCE-FREE MAGNETIC FIELD , 1997 .

[18]  S. Jardin,et al.  Force-free coil principles applied to high-temperature superconducting materials , 1988 .

[19]  Gerald E. Marsh,et al.  Force-Free Magnetic Fields: Solutions, Topology and Applications , 1996 .

[20]  Townsend,et al.  Complex Trkalian fields and solutions to Euler's equations for the ideal fluid. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[22]  H. Moses Eigenfunctions of the Curl Operator, Rotationally Invariant Helmholtz Theorem, and Applications to Electromagnetic Theory and Fluid Mechanics , 1971 .

[23]  S. Chandrasekhar,et al.  ON FORCE-FREE MAGNETIC FIELDS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[24]  B. Josephson Macroscopic Field Equations for Metals in Equilibrium , 1966 .

[25]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[26]  B. Low,et al.  Magnetic field configurations associated with polarity intrusion in a solar active region , 1982 .

[27]  J B Taylor,et al.  Relaxation and magnetic reconnection in plasmas , 1986 .

[28]  Andrew J. Majda,et al.  The Beltrami spectrum for incompressible fluid flows , 1988 .

[29]  Yvon Maday,et al.  On the linear force-free fields in bounded and unbounded three-dimensional domains , 1999 .

[30]  T. Amari,et al.  On the existence of non-linear force-free fields in three-dimensional domains , 2000 .

[31]  D. Dritschel Generalized helical Beltrami flows in hydrodynamics and magnetohydrodynamics , 1991, Journal of Fluid Mechanics.