Pulsed-laser annealing, a low-thermal-budget technique for eliminating stress gradient in poly-SiGe MEMS structures

In this paper, we demonstrate eliminating the stress gradient in polycrystalline silicon germanium films at temperatures compatible with standard CMOS (Al interconnects) backend processing. First, we study the effect of varying the germanium concentration from 40% to 90%, layer thickness, deposition pressure from 650 to 800 mtorr and deposition temperature from 400 to 450/spl deg/C, on the mechanical properties of SiGe films. Then the effect of excimer laser annealing (248 nm, 38 ns, 780 mJ/cm/sup 2/) on stress gradient is analyzed. It is demonstrated that stress gradient can be eliminated completely by depositing Si/sub x/Ge/sub 1-x/(10%<x<92%) bilayers, with the bottom film exposed to a single laser pulse, which changes the grain microstructure of both the bottom and top films. Furthermore, laser annealing seems to reduce surface roughness, significantly, which is an attractive feature for some MEMS applications.

[1]  Sherif Sedky,et al.  Characterization and optimization of infrared poly SiGe bolometers , 1999 .

[2]  Gregory T. A. Kovacs,et al.  Integration of sputtered silicon microstructures with pre-fabricated CMOS circuitry , 2001 .

[3]  Jong-Uk Bu,et al.  Integrated multiwavelength laser source module with micromachined mirrors , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[4]  Chienliu Chang,et al.  A wideband electrostatic microwave switch fabricated by surface micromachining , 2000 .

[5]  W. Fang,et al.  Determining mean and gradient residual stresses in thin films using micromachined cantilevers , 1996 .

[6]  S. Chen,et al.  Critical Laser Fluence Observed in (111) Texture, Grain Size and Mobility of Laser Crystallized Amorphous Silicon , 1993 .

[7]  N. Young,et al.  An investigation of laser annealed and metal-induced crystallized polycrystalline silicon thin-film transistors , 2001 .

[8]  P. Houtte,et al.  Effect of in situ boron doping on properties of silicon germanium films deposited by chemical vapor deposition at 400 °C , 2001 .

[9]  T. Tanaka,et al.  Infrared focal plane array incorporating silicon IC process compatible bolometer , 1996 .

[10]  R. Howe,et al.  Recent progress in modularly integrated MEMS technologies , 2002, Digest. International Electron Devices Meeting,.

[11]  P. Thong,et al.  A comparative study of the initial oxygen and water reactions on germanium and silicon using sims , 1994 .

[12]  Robert Mertens,et al.  Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications , 1998 .

[13]  Seung-Ki Joo,et al.  Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization , 1996 .

[14]  H. Bender,et al.  Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers , 2001 .

[15]  Olaf Reinhold,et al.  Growth and properties of semiconductor bolometers for infrared detection , 1995, Optics & Photonics.

[16]  Krishna C. Saraswat,et al.  Deposition and Properties of Low‐Pressure Chemical‐Vapor Deposited Polycrystalline Silicon‐Germanium Films , 1994 .

[17]  L. H. Hall Preparation and properties of antireflection coatings by chemical vapor deposition , 1972 .

[18]  T. Sigmon,et al.  Laser crystallization and structural characterization of hydrogenated amorphous silicon thin films , 1999 .

[19]  E. Ose,et al.  In-situ diagnostics for preparation of laser crystallized silicon films on glass for solar cells , 1999 .

[20]  E. F. Steigmeier,et al.  Thermal and Electrical Properties of Heavily Doped Ge‐Si Alloys up to 1300°K , 1964 .

[21]  Albert P. Pisano,et al.  POLY-SIGE: A HIGH-Q STRUCTURAL MATERIAL FOR INTEGRATED RF MEMS , 2002 .

[22]  Ann Witvrouw,et al.  Poly SiGe, a promising material for MEMS monolithic integration with the driving electronics , 2002 .

[23]  Arthur Stout,et al.  High-performance uncooled handheld thermal imager for law enforcement , 1997, Defense + Security Symposium.