Biological colonization patterns on the ruins of Angkor temples (Cambodia) in the biodeterioration vs bioprotection debate

The biological colonization present on the temples of the UNESCO World Heritage site of Angkor is wide and relevant, but a debate on its biodeteriorative and bioprotective effects is now developing. We investigated the biological patterns observed on two temples (Ta Nei and Ta Keo) exposed to different microclimatic conditions, in order to assess the damage caused by the communities present on the stone. We analyzed the penetration (depth and spread) into the stone, and the degree of decohesion of seven communities (green algae, cyanobacteria, lichens and mosses). The microscopic analyses highlighted a clear interaction between organism and stone, displaying a trend of increasing harmfulness from the community of the green algae (Trentepohlia) up to the moss communities. All the lichen communities show biodeterioration abilities: the Pyxine community seems more aggressive than the Lepraria and Cryptothecia communities, and more also than the cyanobacterial communities. The positive effects of the lichen cover in reducing dangerous evaporation processes cannot outweigh the negative effects of their hyphal penetration. Light forest cover seems beneficial for the conservation of the Angkor monuments since it reduces evaporation processes, but further studies should be carried out so as to find an optimal balance between contrasting factors.

[1]  The deterioration and conservation of stone historical monuments in Indonesia , 1988 .

[2]  O. W. Purvis The Lichen Flora of Great Britain and Ireland , 1993 .

[3]  J. Delvert XIV. Recherches sur l' « érosion » des grès des monuments d'Angkor , 1963 .

[4]  Teresa Rivas,et al.  Rapid biological colonization of a granitic building by lichens , 1997 .

[5]  J. Rodrigues CAUSES, MECHANISMS AND MEASUREMENT OF DAMAGE IN STONE MONUMENTS , 1991 .

[6]  B. Prieto,et al.  Colonization by lichens of granite dolmens in Galicia (NW Spain) , 1994 .

[7]  J. Braams,et al.  Biodeterioration of stone: a review , 2000 .

[8]  Jie Chen,et al.  Weathering of rocks induced by lichen colonization — a review , 2000 .

[9]  Helmut Brandl,et al.  Chapter 8. Microbial Leaching of Metals , 2001 .

[10]  C. A. Crispim,et al.  Biofilms on church walls in Porto Alegre, RS, Brazil, with special attention to cyanobacteria , 2004 .

[11]  C. Gaylarde,et al.  Microbial Biofilms on the Sandstone Monuments of the Angkor Wat Complex, Cambodia , 2011, Current Microbiology.

[12]  R. Siever,et al.  Dissolution kinetics and the weathering of mafic minerals , 1979 .

[13]  Robert J. Koestler,et al.  Biodeterioration of Stone in Tropical Environments: An Overview , 2002 .

[14]  Berger‐Landefeldt Braun-Blanquet, J.: Pflanzensoziologie. Grundzüge der Vegetationskunde. 2. Aufl. Wien 1951 (Springer-Verlag). 2. Aufl. 631 S. mit 350 Textabb. DM 63.—, Ganzleinen DM 67.20 , 1952 .

[15]  D. Mottershead,et al.  The Role of Lichens in Inhibiting Erosion of a Soluble Rock , 2000, The Lichenologist.

[16]  J. Fornós,et al.  EFFECTS OF BIOKARSTIC PROCESSES ON THE DEVELOPMENT OF SOLUTIONAL RILLENKARREN IN LIMESTONE ROCKS , 1996 .

[17]  Christine C. Gaylarde,et al.  A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America , 2005 .

[18]  Tony J Collins,et al.  ImageJ for microscopy. , 2007, BioTechniques.

[19]  T. Nakagawa,et al.  Deterioration of stone materials in the Angkor monuments, Cambodia , 2000 .

[20]  O. Ciferri,et al.  Of Microbes and Art , 2000 .

[21]  E. Maarel,et al.  The Braun-Blanquet Approach , 1978 .

[22]  G. Hernández-Duque,et al.  Characterization of Epilithic Microbial Communities Associated with Mayan Stone Monuments in Yucatan, Mexico , 1999 .

[23]  S. E. Favero-Longo,et al.  Image analysis for measuring lichen colonization on and within stonework , 2009, The Lichenologist.

[24]  P. Adamo,et al.  Weathering of rocks and neogenesis of minerals associated with lichen activity , 2000 .

[25]  O. Salvadori,et al.  Ecological analysis and biodeterioration processes over time at the Hieroglyphic Stairway in the Copàn (Honduras) archaeological site , 2005 .

[26]  M. André,et al.  Contrasting weathering and climate regimes in forested and cleared sandstone temples of the Angkor region , 2012 .

[27]  O. Salvadori,et al.  Biodeterioration of stone in relation to microclimate in the Ta Nei Temple – Angkor (Cambodia) , 2012 .

[28]  M. Brea,et al.  Colonization by lichens of granite churches in Galicia (northwest Spain) , 1995 .

[29]  M. Seaward,et al.  Major impacts made by lichens in biodeterioration processes , 1997 .

[30]  V. Rives,et al.  Lichenized association between Septonema tormes sp. nov., a coccoid cyanobacterium, and a green alga with an unforeseen biopreservation effect of Villamayor sandstone at ‘Casa Lis’ of Salamanca, Spain , 1997 .

[31]  Thomas Warscheid,et al.  Integrated Concepts for the Protection of Cultural Artifacts Against Biodeterioration , 2000 .

[32]  M. P. Nugari,et al.  Plant Biology for cultural heritage. , 2007 .

[33]  C. A. Crispim,et al.  Deteriogenic cyanobacteria on historic buildings in Brazil detected by culture and molecular techniques , 2006 .

[34]  Ws. Rasband ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA , 2011 .

[35]  J. Braun-Blanquet,et al.  Pflanzensoziologie: Grundzuge der Vegetationskunde. , 1967 .

[36]  Denis Mercier,et al.  Assessment of sandstone deterioration at Ta Keo temple (Angkor): first results and future prospects , 2008 .

[37]  H. Leisen,et al.  Microbiological Studies on Stone Deterioration and Development of Conservation Measures at Angkor Wat , 2011 .

[38]  Rachael D. Wakefield,et al.  Investigations of decayed sandstone colonised by a species ofTrentepohlia , 1996 .

[39]  Bernard J. Smith,et al.  Lichen-induced biomodification of calcareous surfaces: Bioprotection versus biodeterioration , 2013 .

[40]  Heather Viles,et al.  Experimental investigations into the interactions between moisture, rock surface temperatures and an epilithic lichen cover in the bioprotection of limestone , 2003 .

[41]  A. Aptroot,et al.  Pyrenocarpous lichens in Cambodia, with the description of Celothelium longisporum sp. nov. Pyrenulales. , 2013 .

[42]  M. Ramírez,et al.  Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico , 2010, Biofouling.

[43]  C. Gaylarde,et al.  Lichen-like colonies of pure Trentepohlia on limestone monuments , 2006 .

[44]  Rakesh Kumar,et al.  Biodeterioration of Stone in Tropical Environments: An Overview , 1999 .

[45]  H. Viles,et al.  Bioprotection explored: the story of a little known earth surface process , 2005 .

[46]  Cesáreo Sáiz-Jiménez,et al.  Lichen colonization of the Roman pavement at Baelo Claudia (Cadiz, Spain): biodeterioration vs. bioprotection , 1995 .

[47]  Giulia Caneva,et al.  Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by Cyanobacteria and cyanophilous lichens. , 1990 .

[48]  P. Adamo,et al.  Iron oxides and hydroxides in the weathering interface between Stereocaulon vesuvianum and volcanic rock , 1997, Clay minerals.

[49]  Ha Videla,et al.  Biodeterioration of Mayan buildings at uxmal and tulum, Mexico , 2001 .

[50]  S. P. Adhikary,et al.  Survey of epilithic blue-green algae (cyanobacteria) from temples of India and Nepal , 1997 .

[51]  C. Gaylarde,et al.  Analysis of Salt-Containing Biofilms on Limestone Buildings of the Mayan Culture at Edzna, Mexico , 2005 .

[52]  C. Ascaso,et al.  Morphological and Chemical Features of Bioweathered Granitic Biotite Induced by Lichen Activity , 1996 .

[53]  J. Ortega-Calvo,et al.  Deterioration of building materials from the Great Jaguar Pyramid at Tikal, Guatemala , 1995 .

[54]  S. E. Favero-Longo,et al.  Index of Lichen Potential Biodeteriogenic Activity (LPBA): A tentative tool to evaluate the lichen impact on stonework , 2009 .

[55]  D. Lafon,et al.  Protective effect of endolithic fungal hyphae on oolitic limestone buildings , 2012 .