Existence of Solutions to the Logarithmic Choquard Equations in High Dimensions

[1]  Jiankang Xia,et al.  Semi-classical solutions for Schrödinger–Poisson equations with a critical frequency , 2018, Journal of Differential Equations.

[2]  D. Cao,et al.  High energy solution of the Choquard equation , 2017, 1709.01817.

[3]  T. Weth,et al.  Ground states and high energy solutions of the planar Schrödinger–Poisson system , 2017, 1703.05090.

[4]  Jean Van Schaftingen,et al.  The logarithmic Choquard equation : sharp asymptotics and nondegeneracy of the groundstate , 2016, 1612.02194.

[5]  Minbo Yang,et al.  Singularly perturbed critical Choquard equations , 2016, 1611.01712.

[6]  Wang Qingfang,et al.  Pohozaev identities and their applications to nonlinear elliptic equations , 2016 .

[7]  Jean Van Schaftingen,et al.  A guide to the Choquard equation , 2016, 1606.02158.

[8]  Minbo Yang,et al.  Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity , 2016, 1604.04715.

[9]  T. Weth,et al.  On the planar Schrödinger–Poisson system , 2016 .

[10]  Fukun Zhao,et al.  Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential , 2013 .

[11]  J. Bellazzini,et al.  Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations , 2011, 1111.4668.

[12]  W. Zou,et al.  Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth , 2012 .

[13]  J. Stubbe Bound states of two-dimensional Schrödinger-Newton equations , 2008, 0807.4059.

[14]  Huan-Song Zhou,et al.  Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$ , 2007 .

[15]  David Ruiz,et al.  The Schrödinger–Poisson equation under the effect of a nonlinear local term , 2006 .

[16]  Juncheng Wei,et al.  On Bound States Concentrating on Spheres for the Maxwell-Schrödinger Equation , 2005, SIAM J. Math. Anal..

[17]  Irene M. Moroz,et al.  Spherically symmetric solutions of the Schrodinger-Newton equations , 1998 .

[18]  E. Lieb Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .