Ocean tide loading displacements in western Europe: 2. GPS‐observed anelastic dispersion in the asthenosphere

GPS-observed vertical ocean tide loading displacements show in Cornwall, southwest England, and in Brittany, northwest France, discrepancies of 2–3 mm with predicted values based on the isotropic Preliminary Reference Earth Model for the main tidal harmonic M2, yet in central Europe the agreement is better than 0.5 mm. By comparison of ocean tide models and validation with tide gauge observations, we demonstrate that the uncertainties in the former are too small to cause this disagreement. Furthermore, we find that different local models of the crust and different global elastic reference models derived from seismological observations can only reduce the observed discrepancies to 1–2 mm, which still exceeds the GPS observational uncertainty of 0.2–0.4 mm. It is customary to use the elastic properties of the Earth as given by seismic models. Previously, there has been insufficient evidence to determine how to modify these properties during the transformation from seismic to tidal frequencies to account for possible anelastic dispersion in the asthenosphere, and so this effect has been ignored. If we include this effect, then our discrepancies reduce further to 0.2–0.4 mm. This value is of the same order as the sum of the remaining errors due to uncertainties in the ocean tide models and in the GPS observations themselves. This research provides evidence in western Europe of a reduction of around 8–10% of the seismic shear modulus in the asthenosphere at tidal frequencies. In addition, we find that the asthenosphere absorption band frequencies can be represented by a constant quality factor Q.

[1]  J. Mitrovica,et al.  Body tides on a 3-D elastic earth: Toward a tidal tomography , 2009 .

[2]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[3]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[4]  Marie-Noëlle Bouin,et al.  GPS estimates of ocean tide loading in NW-France: Determination of ocean tide loading constituents and comparison with a recent ocean tide model , 2008 .

[5]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[6]  Yuebing Li,et al.  Green's function of the deformation of the Earth as a result of atmospheric loading , 2004 .

[7]  M. Bott,et al.  Crustal Structure in the Vicinity of South-west England , 1971 .

[8]  L. Jia,et al.  Load Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0 , 2012, Comput. Geosci..

[9]  W. Bosch,et al.  Validation of recent tide models by means of crossover differences and time series of bottom pressure and tide gauges , 2011 .

[10]  F. Lyard,et al.  FES 2012: A New Global Tidal Model Taking Advantage of Nearly 20 Years of Altimetry , 2013 .

[11]  Paul Melchior,et al.  Earth Tides , 1952, Nature.

[12]  R. A. Chadwick,et al.  The seismic reflection Moho beneath the United Kingdom and adjacent areas , 1998 .

[13]  Walter H. F. Smith,et al.  A global, self‐consistent, hierarchical, high‐resolution shoreline database , 1996 .

[14]  J. Zschau Tidal Friction in the Solid Earth: Loading Tides Versus Body Tides , 1978 .

[15]  Freysteinn Sigmundsson,et al.  Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Z. Alterman,et al.  Oscillations of the earth , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[17]  T. Dam,et al.  The effect of using inconsistent ocean tidal loading models on GPS coordinate solutions , 2012, Journal of Geodesy.

[18]  Peter J. Clarke,et al.  Ocean tide loading displacements in western Europe: 1. Validation of kinematic GPS estimates , 2015 .

[19]  Peter J. Clarke,et al.  Stability of direct GPS estimates of ocean tide loading , 2004 .

[20]  Jun Guo,et al.  Chebyshev‐collocation method applied to solve ODEs in geophysics singular at the Earth center , 2001 .

[21]  M. Karpytchev,et al.  Evidence for spatially variable friction from tidal amplification and asymmetry in the Pertuis Breton (France) , 2007 .

[22]  Hans-Georg Scherneck,et al.  Assessing the accuracy of predicted ocean tide loading displacement values , 2008 .

[23]  Shfaqat Abbas Khan,et al.  Determination of semi‐diurnal ocean tide loading constituents using GPS in Alaska , 2001 .

[24]  Takeo Ito,et al.  Probing Asthenospheric Density, Temperature, and Elastic Moduli Below the Western United States , 2011, Science.

[25]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[26]  A. Pichon,et al.  Modelling the barotropic tide along the West-Iberian margin , 2013 .

[27]  W. Zahel Assimilating ocean tide determined data into global tidal models , 1995 .

[28]  Gary D. Egbert,et al.  Accuracy assessment of global barotropic ocean tide models , 2014 .

[29]  R. Ray,et al.  Precise comparisons of bottom‐pressure and altimetric ocean tides , 2013 .

[30]  J. Wahr,et al.  Tides for a convective Earth , 1999 .

[31]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[32]  A. Dziewoński,et al.  Anisotropic shear‐wave velocity structure of the Earth's mantle: A global model , 2008 .

[33]  S. Pagiatakis The response of a realistic earth to ocean tide loading , 1990 .

[34]  Olivier Francis,et al.  Global charts of ocean tide loading effects , 1990 .

[35]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[36]  Leonid Petrov,et al.  Study of harmonic site position variations determined by very long baseline interferometry , 2003 .

[37]  Remko Scharroo,et al.  Generic Mapping Tools: Improved Version Released , 2013 .

[38]  Kurt Lambeck,et al.  Geophysical geodesy : the slow deformations of the earth Lambeck. , 1988 .

[39]  T. F. Baker Fidal deformations of the Earth , 1984 .

[40]  H.-G. Wenzel,et al.  The nanogal software : Earth tide data processing package ETERNA 3.30 , 1996 .

[41]  G. Blewitt Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth , 2003 .

[42]  Benjamin F. Chao,et al.  Analysis of tidal signals in surface displacement measured by a dense continuous GPS array , 2012 .

[43]  J. M. STAGG The International Union of Geodesy and Geophysics , 1947, Nature.

[44]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[45]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[46]  A. M. Davies,et al.  A three-dimensional model of diurnal and semidiurnal tides on the European shelf , 1997 .

[47]  W. Zahel Modeling ocean tides with and without assimilating data , 1991 .

[48]  T. Baker,et al.  An estimate of the errors in gravity ocean tide loading computations , 2005 .

[49]  Mike P. Stewart,et al.  GPS height time series: Short‐period origins of spurious long‐period signals , 2007 .

[50]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[51]  T. Brocher Empirical relations between elastic wavespeeds and density in the Earth's crust , 2005 .